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Aluminium — Iron — Silicon

Gautam Ghosh, updated by Xiaojing Li, Shuhong Liu, Yong Du, Mikhail Turchanin and Liya Dreval

Introduction

The ternary system is the basis for many engineering alloys, such as grain refined cast Al-alloys, aluminization of
steels, soft magnetic alloys for transformers efc. In addition, iron and silicon originating from bauxite ore and anode
materials are present in nearly all industrial Al-alloys, and the metallurgical grade silicon contains, among others,
aluminum and iron as impurities.

Iron has a strong influence on the porosity, mechanical properties and extrusion characteristics of Al-Si castings,
which are governed by the amount and morphology of Fe containing intermetallics. In commercial Al-Si castings
these are affected by other transition metals, such as Co, Cr, Mn and Sr that may be present either as alloying additions
or as impurities. It is generally agreed that the elimination of plate-shaped and Chinese-script intermetallic phases
results in an improvement of mechanical properties of Al-Si castings.

Due to these reasons, there have been numerous experimental studies on the characterization of intermetallics
(morphology, composition and crystal structure) and phase equilibria of the ternary system. A summary of
experimental studies of phase equilibria is given in Table 1. The experimental results have been reviewed from time
to time [1934Fus, 1943Mon, 1950Gme, 1952Han, 1959Phi, 1968Dri, 1981Riv, 1981Wat, 1985Riv, 1987Pri,
1988Ray, 1992Gho, 1992Zak, 1994Rag, 2002Rag, 2004Gho, 2007Gho, 2007Kre, 2009Rag, 2010Rag, 2012Rag].
Recent MSIT Evaluation Report was written in 2013 by [2013Gho].

The system is characterized by a large number of ternary phases, both stable and metastable, and more than twenty
ternary invariant reactions during solidification, which impart difficulties in establishing the phase equilibria of the
system. In addition, there are effects of metastability, impurity elements, incomplete reactions, undercooling, and
many solid-state reactions, which are not well understood.

Many earlier works by [1923Dix, 1923Han, 1923Wet, 1924Fus, 1934Roe, 1941Pan] reported primarily the
microstructures of Al rich alloys. [1951Ran] determined the phase boundaries of the Al corner at 475°C by diffusional
anneal technique. Due to extensive investigations [1927Gwy, 1933Nis, 1936Jae, 1937Ura, 1951Hol, 1951Now,
1967Mun, 1987Gril, 1987Ste], the phase equilibria of Al corner are well established.

The first comprehensive study of phase equilibria of the entire system was performed by [1940Tak]. They used
electrolytic iron, pure aluminium and metallic silicon (unspecified purity). Over 150 ternary alloys were prepared
using master alloys of selected compositions in an arc furnace, under hydrogen atmosphere with NaCl as flux on the
molten surface of the alloys, followed by cooling at a rate of 2 to 3°C per 5 to 10 sec. In some cases, in order to confirm
and identify solid-state reactions, the cooling curves were supplemented by heating runs. [1940Tak] employed
metallography, thermal, X-ray, magnetic and dilatometric analyses to establish the phase equilibria. They reported six
ternary phases that form by peritectic reactions. They also presented several vertical sections from 500°C up to the
liquidus temperature. Based on these results, [1981Riv, 1988Ray] constructed a probable isothermal section
at 1000°C.

[1968Lih] studied the Fe corner up to 50 at.% Al and 35 at.% Siusing DTA, magnetometry, microhardness and X-ray
diffraction techniques. The phase equilibria involving ordered and disordered phases in Fe rich alloys were
determined by [1982Miy] and [1986Miy] in the temperature range of 450 to 700°C using transmission electron
microscopy.

Due to their importance in commercial Al alloys, there have been renewed interests on the phase equilibria of Al
corner. [1987Gril] and [1987Ste] studied the phase equilibria of Al corner, using alloys up to 14 at.% Si and
35 at.% Fe, by means of thermal analysis, X-ray diffraction and electron probe microanalysis techniques. They
reported a partial liquidus surface, and partial isothermal sections at 570 and 600°C. However, the latter results were
slightly modified by [1987Pri] to make them consistent with the thermodynamic rules of phase diagram construction.

[1981Zar] reported ten ternary phases, and an isothermal section at 600°C. [2001Kre] determined a partial isothermal
section at 550°C. About 100 alloys, containing up to 50 at.% Fe and 50 at.% Si, were used [2001Kre]. In their later
work, [2007Kre] summarized the available data and constructed the liquidus surface projection of the system. This
projection does not include phase equilibria involving ordered phases. The phase relations were established by means
of optical metallography, EDS analysis of the phases, and X-ray diffraction methods. [2002Gup, 2002Mai] performed
diffusion couple (between pure Fe and Al-Si alloy) experiments in the temperature range of 600 to 1100°C, followed
by quenching the specimens. They reported five isothermal sections based on the microstructural observations and
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composition analysis (by EPMA) of phases in as-quenched specimens. [2008Du] prepared five ternary alloys along
the section Al-15 mass% Fe-10 mass% Si. They studied phase equilibria using DTA, EPMA and XRD techniques.
More recently, [2011Mar] prepared seventy-three ternary alloys using 99.95% Fe, 99.999% Al, 99.9999% Si, and
investigated phase equilibria using SEM, EPMA, DTA and X-ray diffraction techniques. They reported two
isothermal sections, at 800 and 900°C, and six vertical sections. [2011Rog1] determined the crystal structure of the
a-FeAlSi phase by XRD and reported a peritectic reaction by DTA: a-FeAlSi = FeyAlj3+y-FeAl;Si+L. [2014Hao]
prepared two alloys annealed at 500°C for 30 days in the Al-rich corner and they analyzed the alloys in both annealed
and as-cast states by XRD, SEM/EDS and EPMA. Using XRD and SEM/EDS. [2014Li] determined the isothermal
section of the Al-rich corner at 650°C by three Al-rich alloys. Utilizing the same method, [2015Zho] and [2015Zou]
determined the isothermal sections of the Al-rich corner at 700°C and 600°C, respectively.

Thermodynamic properties of ternary alloys were investigated by emf method [1970Mit, 1973Nag, 1980Sud,
1984Ber, 1989Bon, 2004Kan], calorimetry [1937Koe, 19370e¢l, 1997Vyb, 2000Lil, 2000Li2, 2003Kan], using
first-principles methods [2010Du, 2010Fri, 2014Ami]. In addition, thermodynamic datasets of the ternary system
have been assessed within the Calphad formalism [1994Ang, 1998Kol, 1999Liu, 2008Du, 2010Ele, 2014Che].

Binary Systems

The Al-Si binary phase diagram is accepted from [2004Luk]. The Al-Fe phase diagram is accepted from the binary
evaluation report of [2022Ste] and presented in the chapter “A/ - Fe (Aluminium — Iron)” of this volume. The Fe-Si
binary phase diagram is essentially based on the results of [2017Cui] but with certain amendments to take the
homogeneity ranges of certain binary compounds into account and better reproduce the order-disorder transition in
the Fe-rich part. The amendments were introduced considering the results of [1943Wei, 1960Aro, 1976Ber, 1977Kud,
1982Kub, 20120hn]. The final diagram is shown in Fig. 1. The tetragonal high-temperature modification of FeSi,
was denoted as “Fe;Si;”.

Solid Phases

The complexity of phase equilibria of the Al-Fe-Si system is primarily due to the occurrence of many ternary phases,
and the associated reactions during solidification, and also in the solid state. While some of these ternary phases are
stable, some are metastable. In recent years, the detailed crystallographic characterization of stable phases has been
performed, however, the current crystallographic data of many metastable ternary phases are far from being complete.
The difficulties of complete crystallographic characterization of these phases are due to (i) the occurrence of several
phases over a relatively narrow composition range in the Al corner, (ii) their complex crystal structures along with the
presence of high density of planar defects, (iii) the order-disorder reactions in the Fe corner, (iv) many invariant
reactions which under normal experimental conditions (both during solidification and during heat treatments) do not
undergo completion, and (v) the effect of heterogeneous nucleation on the phase selection during solidification. In the
past decades a large number of ternary phases in the Al-Fe-Si system have been reported. A chronological survey of
these ternary phases was presented in the MSIT evaluation of [2013Gho]. It may be noted that some of the results
reported by different research groups are still controversial.

The information on the binary phases could be summarized as following. At 550°C, the solubility of Fe and Si in (Al)
is less than 1 at.% [2001Kre], and that of Fe and Al in (Si) is extremely small.

The Fe,Aly3 phase is reported to dissolve 0.8 mass% Si [1955Arm], 0.2 mass% Si [1967Sun], 1.0 mass% Si
[1984Don], 2.9 mass% Si [1987Skj1], up to 6.0 mass% Si at 600°C [1987Ste], 4 at.% (3.4 mass%) Si at 550°C
[2001Kre], and 5 to 6 at.% (4.2-5.1 mass%) Si in the temperature range of 800 to 1115°C [2002Mai]. The maximum
solubility of Si in the Fe4Al, 5 phase at 650°C was 2 at.% as reported by [2014Li]. This is associated with an increase
in the a lattice parameter and a decrease in the b-lattice parameter, whereas no significant changes in the ¢ lattice
parameter and 3 were detected by [1987Ste]. The composition dependence of a and b lattice parameters in FeyAl;5 is
expressed by [1987Ste] as

a (inpm) = 1505.0 + 1.14-Wg, - 0.41-Wg;
b (in pm) = 862.8 — 1.41-Wg, — 1.3-Wg;
where W, and Wg; are the mass% of Fe and Si, respectively.

A detailed crystallographic analysis of the FeyAl;3, by means of convergent beam electron diffraction and
high-resolution electron microscopy, has been performed by [1987Skj3]. Lattice images revealed that the FeyAl;;
crystals are divided into tiny domains (few thousand pm) that are separated by lattice displacements such as stacking
faults [1987Skj2, 1987Skj3].
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Available data indicate that the solid solubility of Si in Fe,Als decreases from about 4.5 at.% at 1020°C [2002Gup,
2002Mai] to about 2.5 at.% at 550°C [2007Kre]. At 550°C, FeAl, dissolves about 1 at.% Si [2001Kre].

Initial studies showed that the Fe;Si; phase dissolves up to about 0.5 mass% (0.7 at.%) Al [1961Sab, 1965Sab,
1965Skr, 1968Sabl, 1968Sab2] which is accompanied by a small increase in both the a and c lattice parameters.
According to [2001Kre, 2007Kre, 2011Mar], low-temperature FeSi, dissolves up to 1 at.% Al between 900 and
550°C. The FeSi phase dissolves substantial amount of Al [1996Szy, 1998Dit, 2001Kre, 2007Kre, 2011Mar].
Between 550 and 900°C, it is about 10 at.% with Al substituting Si [2001Kre, 2007Kre, 2011Mar]. The lattice
parameters of FeSi, Fe;Si; and FeSi, as functions of Al content were reported by [1996Szy]:

For FeSi:

a (in pm) = 448.1 + 5.4xp;

For Fe;Si:

a (inpm) =269.1 + 17.9:x4

c (inpm)=515.7+30.2:x4

For FeSiy(1):

a (in pm) = 986.6 + 7.3-x 4

b (in pm) = 778.7 + 10.3-x;

¢ (inpm)=782.1 +27.6:xp;

where x4 is the atomic fraction of Al.

Ordered phases. Fe;Al and Fe;Si (the ordered D05 structure), as well as FeAl and FeSi (the ordered B2 structure),
form continuous solid solutions denoted as Fe;(ALSi) and Fe(AlSi). The ordered D05, B2 and disordered bcc (the

latter is characteristic of the (#0Fe) phase) structure are interrelated since D05y and B2 can be presented as a
superlattice based on a simple bcc cell.

The lattice parameter of the alloys along Fe;Al-Fe;Si and Fe;3Al,;7-Fe;5Si57 sections and also for the commercial
SENDUST and ALSIFER 32 alloys were determined systematically and accurately by [1979Cow]. The composition
dependence of the lattice parameter can be expressed as:

Along the Fe;Al-Fe;Si section

a (in pm) = 565.54 + 12.846'W + 1.896-W?2 — 0.7245-W> = 565.54 + 12.776:C + 1.9522-:C % - 0.7094-C 3
where W = mass fraction of Fe;Al and C = mole fraction of Fe;Al

Along the Fe;3Aly7-Fe;3S1,7 section

a (in pm) = 564.462 + 11.964-W + 5.3929-W? — 2.5-W3 = 564.462 + 11.915-C + 5.3183-C 2~ 2.321-C 3
where W = mass fraction of Fe;3Aly7 and C = mole fraction of Fe;3Al,7.

[1979Cow] attributed a small, but consistent, deviation from the linear dependence on composition, along both
sections, to the incomplete ordering as Al is replaced by Si. [1979Bur] also reported limited lattice parameter data
along Fe;Al-Fe;Si section that are in reasonable agreement with those of [1979Cow], but [1979Bur] assumed a linear
dependence of lattice parameter on composition (see also [1977Nicl], [1977Nic2]). [1968Lih] reported lattice
parameters of ternary alloys up to 30 at.% Si and 47 at.% Al at 20, 500, 600 and 900°C. [1946Sel] also measured the
lattice parameter of ternary alloys up to 18 mass% Si and 13 mass% Al The lattice parameter of Fe;(Al,Si) containing
about 10 mass% Al and 5 mass% Si is reported to be 570+3 pm [1978Xu]. The lattice parameter of an Fe-5.5 mass%
Al-9.7 mass% Si alloy is reported to be 568.4 pm after water quenching and 568.54 pm after annealing for 24 h
at 600°C.

Following the experimental works [2001Kre, 2007Kre, 2011Mar] and the previous critical evaluations [1992Gho,
2004Gho, 2013Gho] and review [2022Mar], eleven ternary phases considered to be stable. The composition ranges,
in which they were reported experimentally, are shown in Fig. 2. The provided boundaries are schematical and cannot
be attributed to a particular temperature. They encircle the compositions, corresponding to the homogeneity range of
a ternary phase, as reported in the original papers. For the papers, in which a significant number of compositions were
reported, only the highest concentrations of elements are shown in the figure. The ternary compounds were differently
denominated by various research groups. Some of the older denominations are reported in Table 2.

Fe3Al,Si;. The identification of this phase using the XRD method is especially complicated, because it shows a
significant homogeneity range together with a low symmetry structure. This results in the XRD powder pattern
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changing drastically over the composition range. It is then of no surprise that, for a long time, two ternary phases
belonging to the Fe rich and Fe poor regions of the homogeneity range were considered as two different ternary
intermetallic compounds by [1974Mur, 1981Zar, 2002Gup, 2002Mai]. In 2001, [2001Kre] found that these
compounds were the same phase (Fe;Al,Si3) with an extended homogeneity range. [2004Bos] later confirmed this
result. The crystal structure and lattice parameters of Fe;Al,Si; were established for the first time by [1996Yan]. The
authors performed the measurements for single crystals and found that this compound has a triclinic structure (aP16,
P1, Fe;Al,Si3). [2001Kre, 2007Kre, 2011Mar] confirmed the crystal structure proposed by [1996Yan]. [2011Mar]
measured the variation of the lattice parameters of Fe;Al,Si; across the homogeneity range. These results are
reproduced in the present work in Fig. 3 and listed in Table 2. The a and y parameters decrease with increasing
Si-content while b, ¢, «, and B increase. The variation of the cell volume with the composition is practically linear.
The cell volume decreases with increasing Si-content, which is consistent with the substitution of the larger Al- by
smaller Si-atoms. According to [2011Mar], the homogeneity range of this phase extends from Fes; sAlyq (Sigg 5
(at.%) to Fes3;5Al4; 5811 (at.%) at 800°C while [2004Bos] reported the homogeneity range between
Fe37V5Al21VOSi41'5 (at.%) and Fe36.5Al45_OSi13.5 (at.%) at 727°C.

y-FeAl;Si. This compound also shows a significant homogeneity range as follows from the data of [1967Mun,
1974Mur, 1981Zar, 2001Kre, 2011Rog2]. The crystal structure and stoichiometry of this phase was a subject of
numerous experimental efforts. [1952Arm], [1955Arm], who denoted this compound as o5, reported that it had a
cubic structure. Later, [1967Mun] proposed that this phase (denoted as y-FeAlSi) possessed C-face-centered
monoclinic structure. This type of the crystal structure has been accepted by many other research groups. In particular,
[2001Kre] used the monoclinic unit cell to index diffraction patterns measured from a three-phase Fe,,Als;S1;7 (at.%)
sample. This sample contained predominantly y-FeAl;Si and small amounts of FeAl,Si and Fe4Al; 3. Until 2004, no
single crystal studies were reported for this ternary phase. [2004Sug] measured the intensity patterns of a single crystal
with a composition of Fey gAlgz Sijg 1 (at.%), which was cut out from an as-cast sample. [2004Sug] reported that
the observed patterns lead to a rhombohedral structure R3. Although, this phase was considered to be unknown and
was denoted as A-FeAlSi, its composition fell into a homogeneity range of y-FeAl;Si. [2011Rog2], who determined
the crystal structure from single crystals grown from ternary melts using XRD, later confirmed the finding of
[2004Sug]. The authors also determined the composition of the compound and “FeAl;Si” stoichiometry for it. The
y-FeAl;Si denomination of [2011Rog2] is used in the present evaluation. The lattice parameters and space group of
[2011Rog2] agree fairly well with those of [2004Sug]. They are also compatible with the previously reported
monoclinic cell, since every monoclinic structure allows setting up basis vectors in different ways. [2016Yu] also
found a ternary phase having the R3 space group by examining thin films produced from as-cast Fey ,Algg »Sig
(at.%) sample. The examination was performed using TEM. Although space group and lattice parameters agree with
the data of [2004Sug, 2011Rog?2], the composition of the phase (Fe|5.74.0.61Ales 54.1.22511572..0.82 (at.%)) measured
by EDX spectroscopy corresponds to the region of B-FeAly 5Si. [2016Yu] themselves attributed this composition to
the region of y-FeAl;Si as reported by [2007Kre]. The reasons for such discrepancies in the composition of the phase
reported by [2016Yu] and other authors are not clear. [2011Rog2] also measured the homogeneity range of y-FeAl;Si
and variation of the lattice parameters with composition (Fig. 4). The reported homogeneity range extends from
Fey 1Al 781152 (at.%) to Feyy sAlsy 4Sine 1 (at.%).

FeAl,Si. This phase was for the first time reported by [1940Tak]. In earlier studies of [1974Mur, 1981Zar], it was
claimed to have rhombic structure. In latter work of [1989Ger2], the orthorhombic structure (Cmca) was reported for
this phase. Although [1989Ger2] proposed the FeAl,Si stoichiometry for this compound, which agree well with that
reported by [1940Tak, 1974Mur, 1981Zar], its homogeneity range measured by [2001Kre, 2007Kre, 201 1Mar] at
550, 800°C using EDX or EPMA never covers the Fe,sAls(Siys (at.%) composition corresponding to this
stoichiometry. The homogeneity range of FeAl,Si extends from Fe,5 ,Als; gSiy3 (at.%) to Feyq gAlsy 5Sijg g (at.%) at
800°C [2011Mar]. The Feyy 1gAl3; 245153 55 (at.%) composition reported for FeAl,Si by [2002Gup] seems to be
erroneous especially considering the fact the authors did not perform any XRD measurements in their study.

Fedl;Si,. This phase was reported in a number of works starting from at least 1931. Since it has extended
homogeneity range, the reported stoichiometries, as well as compositions, varied from Fe,Al¢Si; and FeAl;Si, to
FeAl,Si,. Its crystal structure was refined as tetragonal /4/mcm structure of PdGas by [1969Pan]. [1995Guel]
referring to [1969Pan] noted the existence of superstructure reflections suggesting ordering between Al and Si atoms.
[1995Guel] came to a conclusion that the single crystals, which were studied in this work, showed the 4/mmm Laue
symmetry and weak reflections indicating a superstructure with a primitive unit cell. The structure could be solved in
two stages. As [1995Guel] explained, if the superstructure reflections were neglected (the first stage), the average
structure was refined in the tetragonal /4/mcm space group of PdGas. This is in full agreement with the results of
[1969Pan, 1974Mur, 1981Zar, 2007Kre]. At the second stage, the superstructure was solved. Consequently,
[1995Guel] concluded that FeAl;Si, has ordered orthorhombic Pbcn superstructure. The results of [1995Guel] were
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adopted in the present evaluation. [2007Kre] suggested that the homogeneity range of FeAl;Si, extends from
Fe 5. 5Al54Si30 5 to Feyg sAlys 5Sizg (at.%).

a-FeAlSi. This compound with average formula Fe,Al; | Si as reported by [2011Rog1] is known to form very easily
by crystallization from ternary Al-rich melts. According to [2007Kre], the homogeneity range of this compound is
between F318A1728i10 to F619.5A1688i12.5 (at%)

p-FeAl, sSi. This compound, as well as FeAl;Si,, form as plate-shaped particles in secondary Fe-containing Al-Si
alloys during solidification or occur during bonding of Al-Si alloys to cast iron or steel. As [2019Bec] notes, the
correct identification of these two phases is sometimes doubted for the following reasons. B-FeAly sSi occurs at
approximately the same Fe content, at lower Si and higher Al but approximately similar (Al+Si) molar fraction as
FeAl;Si,. Thereby, depending on the formation conditions, the plates might be reported to be FeAl;Si, instead of
B-FeAly 5Si if the phase identification is based on the morphology and/or chemical compositions of the particles.

The crystal structure of B-FeAly 5Si is still under discussion. This unsolved issue is in particular related to the fact that
B-FeAly 5Si and FeAl;Si, are closely related, consisting of the same basic constituent layers. Furthermore, [1950Phr,
1998Han, 2000Zhe, 2003Gjo] in particular mentioned that the ordered stacking of the layers can lead to superstructure
formation that can classified as polytypes. [2019Bec] noted that although the B-FeAly 5Si is always described with
near tetragonal lattice parameters, further details reported by the researchers may vary. This compound can be
reported as monoclinic with space group 412/al, orthorhombic or tetragonal with lattice parameter ¢ either around
2080 pm or 4160 pm.

[2019Bec] analyzed the crystallographic data reported in the literature and their own experimental results. The authors
formulated structural models based on ordering of the constituting double layers being shifted by a/2 or b/2
displacements leading to 4 different double layer positions A, B, C, and D. Idealized two polytype structures were
proposed. The AB polytype with idealized Acam symmetry actually shows a monoclinic distortion towards 412/al
symmetry. The second polytype is ABCD polytype with idealized /4|/acd symmetry. [2019Bec] also reported
stackings with non-periodic sequence A, B, C and D double layers to exist next to the ordered polytypes. These
disordered structures might be described with tetragonal /4/mmm space group. [2019Bec] concluded that the observed
polytype structures for the B-FeAly sSi phase were preventing the distinct characterization of the phase polytypes.
[1994Rom] indexed EBSD data using a tetragonal structure mimicking the diffraction effects due to a disordered
stacking sequence (Table 3).

&Zﬂ i& 3 [1995Gue2] found the crystal structure of this compound to be monoclinic. This was later confirmed by
[2001Kre, 2007Kre, 2011Mar]. According to [2011Mar], Fe,Al;Si; shows significant homogeneity range at 800°C
which extends from F624A14lsi35 to F626Al46.55127'5 (at%)

Fe3Al,Si,. [1996Yan] reported this phase has orthorhombic crystal structure. [2001Kre, 2007Kre, 2011Mar]
confirmed this finding. According to [1974Mur, 1981Zar], the composition of this phase at 600°C is Fe;,AlsgSis
(at.%) that is much higher than the highest aluminium solubility in this compound (Fes4 ;Alyg Si37 3 (at.%)) reported
by [2011Mar] for 800°C. More work is required to clarify this issue.

7;(FeAl, 4Siy¢) and Fe; ,41,Si. Several research groups provided their data on the t; crystal structure. [1991Ger]
reported a quite simple hexagonal NasAs-type crystal structure for t; with a composition FeAl, 4Sip¢. While
[2004Bos] found this phase to be orthorhombic, [2007Kre] stated that it should have hexagonal structure. Recently,
[2022Mar] re-evaluated the diffraction data of [2007Kre] using the peak positions reported by [1991Ger] and found
that the data of [1991Ger] yield a better description of the t; crystal structure than those of [2007Kre]. The
crystallographic data and stoichiometry reported by [1991Ger] are accepted in the present evaluation.

7, and hexagonal Fe; ;Al4Si (Co,Als prototype) were several times reported to exist at the same composition
(Fey5Al140S1;5 (at.%)) depending on the production condition [1974Mar, 1981Zar, 2001Kre]. This led to certain
problems with the interpretation of the data. [1974Mar, 1981Zar] used the same letter “F” for as-cast Co,Als-type
single crystals and for a phase (crystal structure was not reported) included in their isothermal section at 600°C.
In their earlier study, [2001Kre] discussed t; and Fe; ;Al4Si reported by [1989Gerl] as if they were the same
compound. In their latter work, [2007Kre] came to the conclusion that t; and Fe; ;Al4Si should be considered as two
different phases.

Available information does not allow to take final decision regarding the low-temperature phase equilibria involving
these compounds. Ty is probably stable between 550 and 727°C as follows from the isothermal sections reported by
[1974Mur, 1981Zar, 2001Kre, 2004Bos], while Fe; 7Al4Si could be stable at 727°C and higher temperatures
according to [2004Bos, 2007Kre, 201 1Mar]. It should be however noted that [1989Ger1] claimed the occurrence of
the Fe; 7Al4Si1 (Co,Als prototype) compound in their sample after annealing at 597°C. This suggests the stabilization
of this phase below 700°C. Both compounds have homogeneity ranges but their precise establishment at different
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temperatures requires further experimental efforts. According to [2004Bos], t; shows a homogeneity range of
24-25 at.% Fe, 59-57 at.% Al, 17-18 at.% Si at 727°C. For Fe; 7Al4Si, [2011Mar] reported a solubility range of
26.0 at.% Fe, 62.5-65 at.% Al, 11.5-9.0 at.% Si at 800°C. Future studies are certainly required to understand the phase
equilibria involving t;.

FeyAl3Si. This compound was for the first time reported by [2011Mar], who also established its crystal structure.
[2011Mar] noted that the real composition of the phase as determined by EPMA - 36 at.% Fe, 48 at.% Al, 16 at.% Si -
deviates slightly from the ideal composition of the phase.

A number of the metastable ternary phases were listed in the previous MSIT evaluation by [2013Gho]. Some of them
are either derivatives of the stable ternary compounds or develop upon small additions of manganese, chromium or
other metal, for example, Chinese script o, (/m3) [2022Mar]. For more details refer to the MSIT evaluation of
[2013Gho].

Quasibinary Systems

[1931Fus] and [1934Fus] proposed a quasibinary section Si-Fe4Al, 5 with a peritectic reaction L + Fe4Al;3 = FeAl;Si,
at about 920°C and a eutectic reaction between (Si) and FeAl;Si, at 850°C and 32 mass% Si. However, later works
failed to confirm the presence of such a quasibinary section and consequently it is disregarded.

Invariant Equilibria

Figure 5 shows the reaction scheme which is based on the reaction scheme proposed by [2007Kre] with certain
amendments according to [1988Ray] and [2011Mar]. [2007Kre] constructed their reaction scheme and liquidus
surface considering the data available in the literature and their own experimental results. Some of the reactions were
not actually measured but deduced from available experimental data.

Since the information on the phase equilibria involving the ordered phases is scarce, no conclusions could be drawn
regarding the invariant reactions involving (Fe,Al)Si and Fe;(Al,Si) phases. Therefore, these phases were denoted as
“Ord” and some of the phase transformations with their participation in the Fe-rich part were omitted. The information
about compositions of liquid phase involved in the invariant reactions are listed in Table 3.

Based on their results, [1940Tak] suggested that FeAl, which does not participate in the liquid-solid phase equilibria
in the Al-Fe system should appear in the liquidus surface of the ternary system. The presented experimental data are
however controversial. They contradict the phase equilibria involving FeAl, as presented in the Al-Fe phase diagram
accepted here and, therefore, allow different interpretations. [1940Tak], for example, stated that the L + FesAlg = Ord
+ FeAl, and L + FeAl, = Ord + Fe,Al; reactions they proposed could not be distinguished clearly. Therefore, a
temperature interval of 5°C was assumed. In this work, the L + FesAlg = Ord + FeAl, and L + FeAl, = Ord + Fe,Al;
reactions suggested by [1940Tak] and accepted by [2007Kre, 2011Mar] were substituted by L + Fes;Alg = Ord +
Fe,Als (U, at 1120°C) following the suggestion of [1988Ray] and by Fe,Als + FesAlg = Ord + FeAl, (U; between
1095 and 1120°C). The Uj; reaction was proposed in this work to take the phase equilibria with FeAl, into account.
Further experimental studies are required to cast light on this matter.

Most ternary compounds form by peritectic reactions. Except for the Pg reaction, the temperatures invariant reactions
were accepted according to [2007Kre]. The Pg temperature is according to [2011Rog1]. The peritectic temperature of
y-FeAl;Si was not measured experimentally. [2007Kre] suggested this phase to form between 900 and 934°C.
Fe,Al;Si form via peritectoid reaction at 1005°C as proposed by [2011Mar].

[2007Kre] and [2011Mar] proposed the tentative solid-state invariant reactions between 550 and 800°C based on their
own experimental results and earlier data of [1974Mur, 1981Zar, 2004Bos]. However, neither of the proposed sets of
reactions accounts for all discrepancies in the three-phase equilibria reported for different isothermal sections. The
main reason behind this issue is that the phase equilibria between (Si), FeSi,, Fe;Si;, Fe,Al;Si; and FeyAl,Siy below
800°C reported by different authors are inconclusive and contradictory. It is established by [2007Kre] and [2011Mar]
that Fe3Si, is stable in the ternary system at much lower temperatures (up to 700°C according to [2007Kre]) than in
the Fe-Si system. However, the phase equilibria involving this phase between 700 and 800°C are barely studied.
Neither exact temperature nor phases emerging after the decomposition of Fe;Si; are established.

In view of this insufficiency of the accurate experimental data, [2007Kre, 2011Mar] deduced the solid-state reactions
by comparing the phase equilibria at different temperatures. This approach however allows different sets of solid-state
reactions depending on the experimental data that were considered reliable. In the present evaluation, it was decided
to preserve the reaction scheme as simple as possible since no suggestive information on the phase equilibria below
800°C has been published since 2011. Most of the solid-state invariant reactions proposed by [2011Mar] were
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accepted. The estimated temperature range in which these reactions occur was however changed to preserve the
internal consistency between different isothermal sections. The (Si)+Fe;Al,Siy=Fe,Al;Sis+Fe;Al,Si, suggested by
[2011Mar] was replaced by Fe,Al;Siz+FeAl,Si=Fe;Al,Siz+y-FeAl;Si after [2007Kre] to further simplify the
reaction scheme and to avoid introduction of additional solid-state reactions below 600°C. The accepted set of
reactions requires certain changes to be introduced in the isothermal sections reported by [1974Mur, 1981Zar] and
[2004Bos] (see ‘Isothermal Sections’ part). In this respect, it should be pointed out that [1974Mur, 1981Zar] and
[2004Bos] did not provide the primary data of their experiments, i.e. compositions of the phases in equilibrium.
[1974Mur, 1981Zar] did not specify their experimental procedure. Therefore, the evaluation of the accuracy of the
results presented in these papers is not possible and allow different interpretation. This in turn causes problems with
the further assessment of the solid-state invariant reactions. Since very little is known about the reactions involving
Ty, they were not included in the reactions scheme.

As follows from Fig. 5, the reaction scheme of the Al-Fe-Si system is very complex. Not all invariant reactions were
measured experimentally, and some of these reactions take place in a very narrow range of temperature, thus, difficult
to resolve by thermal analysis. The phase equilibria involving the ordered phases are almost unexplored. Therefore,
further experimental studies are required to better understand the phase diagram of the system.

Liquidus and Solidus Surfaces

The liquidus surface is shown in Fig. 6. It is essentially accepted according to [2007Kre], who used the data of
[1927Gwy, 1940Tak, 1951Now, 1952Arm, 1981Riv, 2004Pon1, 2004Pon2, 2004Bos] but was slightly amended to
preserve the compatibility with the binary systems accepted in this work and to be in agreement with the reaction
scheme presented in the ‘Invariant Equilibria’ section. As it was already mentioned the main changes are associated
with the region close to the FeAl, phase. The phase equilibria involving the ordered phases was not included in the
absence of the corresponding experimental data.

There are no published data for the solidus projection of the entire system, even though a number of vertical
projections are available [1927Gwy, 1932Nis, 1933Nis, 1940Tak, 1946Phil]. The solidus projection of the Fe corner
was reported [1968Lih], but their results differ substantially along the Al-Fe binary edge, so they are not
accepted here.

Isothermal Sections

Figures 7 and 8 show the isothermal sections at 1100 and 1020°C, respectively. [2002Gup] constructed these two
isothermal sections based on the microstructural characterization in diffusion couples that were quenched from the
respective temperatures. They also utilized the vertical sections of [ 1940Tak]. However, several amendments are done
to comply with the accepted binary phase diagrams, the reaction scheme in Fig. 5 and vertical sections reported by
[2011Mar]. All changes are shown with dashed lines. The tentative phase boundaries between (e.0Fe) and ordered
(Fe,Al)Si, as well as between ordered (Fe,Al)Si and Fe;(ALSi), were added. However, the phase equilibria involving
ordered phases are not explored in detail for these temperatures. Therefore, it was impossible to rule out which of the
ordered phases taking part in some of the three-phase equilibria. Such tie-triangles were labelled using “Ord”
denomination. The tentative phase boundaries between (¢0Fe) and (yFe) were also added. The phase boundary
related to the liquid phase and corners of the tie-triangles corresponding to the liquid compositions were adjusted to
be in agreement with the accepted liquidus and reaction scheme.

In Fig. 7, all two- and three-phase fields involving FesAlg, originally proposed by [2002Gup] were preserved as they
are in good agreement with the accepted Al-Fe diagram. This observation of [2002Gup] supports to certain extent the
invariant reaction U; proposed in the present work.

In their original isothermal section at 1020°C, [2002Gup] showed two three-phase fields: L + FeSi, + Fe3Al;Si; and
FeSi + FeSi, + Fe;Al,Si5. But these triangles are incompatible with the reaction scheme in Fig. 5. To be consistent,
these are replaced by two three-phase fields: L + FeSi + Fe5Siy (from e;) and L + FeSi + Fe;Al,Si; (from P) in Fig.
8. The homogeneity range of the Fe;Al,Si; compound was also changed since high solubility of iron in this phase as
reported by [2002Gup] contradicts the results of the latter studies by [2007Kre, 201 1Mar]. The homogeneity ranges
of FeSi and Fe;Si; were also adjusted to preserve compatibility with liquidus surface projection constructed in the
present work and vertical sections by [2011Mar].

[1981Riv, 1988Ray] constructed an isothermal section at 1000°C utilizing the results of the polythermal sections of
[1940Tak]. It should be pointed out that [1940Tak] did not find Fe;Al,Siy and Fe,Al;Si during their experimental
examinations. These phases were reported latter in the studies of [1974Mur, 1981Zar, 2001Kre, 2007Kre, 201 1Mar].
Hence, the isothermal section at 1000°C constructed by [1981Riv, 1988Ray] is not compatible with the reaction
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scheme and the liquidus surface accepted in the present evaluation. This section was discarded since the available
information is not enough to introduce the corrections required for attaining the agreement between this section and
other diagrams.

In Figs. 9 and 10, the isothermal sections at 900 and 800°C are shown. This section is essentially accepted according
to [2011Mar]. Solid lines show the phase fields that were actually measured by the authors. The dashed lines show
deduced phase equilibria. The tentative phase boundaries between (0Fe), Fe;(ALSi) and Fe(Al,Si) were added.
A question mark in the doubtful region indicates the need for further experimental data. The homogeneity region of
v-FeAl;Si was adjusted to be in agreement with the latter data of [2011Rog2]. Some of the phase boundaries were
adjusted to be in agreement with the binary phase diagrams accepted in the present chapter. The isothermal sections
at 600, 800, and 900°C were also constructed by [2002Mai]. These sections are essentially based on the
microstructural characterization in diffusion couples that were quenched from the respective temperature. There is a
contradiction in the sections at 800 and 900°C reported by [2011Mar] and [2002Mai]. In the present evaluation, the
results of [2011Mar] were preferred since they were obtained using more comprehensive and accurate experimental
procedure.

The phase boundary of the liquid phase was changed most significantly in Fig. 9 to be in agreement with the liquidus
surface projection in Fig. 6. It should be pointed out that only compositions of the liquid in the tie-triangles, not the
phase assemblages were changed. [2011Mar] have not actually measured the composition of the liquid phase (except
for the L+(Si)+Fe;Siy tie-triangle). Therefore, the proposed changes are acceptable in view of the data used to
construct the liquidus surface and reaction scheme. The corner of the L+(Si)+Fe;Si; tie-triangle corresponding to the
liquid was shifted by 5 at.% of Fe and Si comparing to the measured data. Consequently, the corresponding edges of
the triangle are shown with dashed lines. Since the composition of the solidified liquid could deviate to some extent
from the equilibrium composition, this shift could be considered as acceptable. According to the reaction scheme, the
U;o (L + FeAl,Si = y-FeAl;Si + Fe4Aly5) reaction occurs at 900°C. The reaction plane corresponding to this reaction
is shown in Fig. 9 and denoted “U;,”. In Fig. 10, the tentative L+ y-FeAl;Si+ Fe; 7Al4Si and L+ FeyAl;;5Si+
Fe; 7A14Si tie-triangles proposed by [2011Mar] were replaced by the L + y-FeAl;Si + FeyAlj; and FeAl,Si +
y-FeAl;Si + Fe,Al 5 phase regions to be in agreement with the accepted reaction scheme in Fig. 5.

Figure 11 shows the isothermal section at 727°C. It was essentially accepted after [2004Bos]. However, certain
changes were introduced to preserve the consistency with the reaction scheme (see ‘Invariant Equilibria’ section).
Three (Si)+FeSi,+Fe;Al,Si,, FeSi+FeSi,+Fe;Al,Sis, and FeSiy+Fe;Al,Sis+Fe;Al,Siy tie-triangles were replaced by
three-phase fields involving the high-temperature Fe;Si; phase, which was stabilized by Al additions at low
temperature. This decision is to certain extent justified by the experimental results of [2007Kre], who have found
Fe;Siy to be in equilibrium with (Si) and Fe,Al;Si; at 700°C. However, this three-phase equilibrium reported by
[2007Kre] was not accepted in the present evaluation. It would require the introduction of too many unjustified
solid-phase invariant reactions. Instead, the tie-triangles including Fe;Si; similar to those reported by [2011Mar] were
drawn. There are also contradictions between the results of [2011Mar] and [2004Bos]. According to [2011Mar],
Fe,Al;Si should exist at 727°C while [2004Bos] did not report the existence of this compound at this temperature.
The Fe(ALSi)+Fe;Al,Siz+Fe,Als tie-triangle reported by [2004Bos] is replaced with three tie-triangles involving
Fe,Al;Si in the present evaluation. The proposed changes are tentative and require further experimental confirmation.
As it was already mentioned in the ‘Solid Phases’ section, the information involving the T phase is contradictory,
and further experimental efforts are needed to clarify this issue. According to [2004Bos], this phase is stable at 727°C
and is in equilibrium with a number of other ternary phases.

Phase equilibria involving the ordered Fe;(AlSi) (D03) and Fe(AlSi) (B2) phases below 700°C were studied by
[1971Gle, 1982Miy, 1984Mat, 1986Miy]. Figures 12 and 13 show the topology of ordered (Fe;Al, FeAl) and
disordered (adFe) phase fields in the partial isothermal sections at 700 and 650°C. These results are adopted from
[1982Miy] and [1986Miy] who studied about 20 ternary alloys, containing up to 40 at.% solute atoms (Al + Si), by
means of transmission electron microscopy. According to [1986Miy], the ordered FeSi” (B2) phase in the Fe-Si
system is stable up to 450°C, and the FeSi'+ Fe;Al miscibility gap occurs below 700°C. This contradicts to the Fe-Si
phase diagram adopted in the present evaluation, according to which FeSi” disappears below 700°C, and the
miscibility gap occurs at around 1200°C. Therefore, the partial isothermal sections at 700 and 650°C were adjusted
to preserve the compatibility with the Fe-Si phase diagram accepted here. In Fig. 12, the miscibility gap originating
from the Fe-Si edge was added. In Fig. 13, the B2 phase boundary was modified so that it did not originate from in
the Fe-Si system. The Fe(AlSi) to (¢0Fe) transformation is of the second order. [1982Miy, 1986Miy] reported the
phase separation between Fe3(AlSi) (D03) + Fe(AlSi) (B2) and (a:0Fe) + Fe3(AlSi) (D03) in the ternary system at
650°C. At 700°C, the critical point, at which the Fe3(Al,Si) (D05) + Fe(Al,Si) gap disappears, is unknown. Therefore,
the phase fields are shown with dashed lines. At 650°C, this change occurs at around 20 at.% Al, 79 at.% Fe, 1 at.%
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Si[1986Miy]. [1984Mat] also observed two kinds of ordering processes leading to phase separation. X-ray diffraction
data and TEM observations of [1971Gle] concerning various order-disorder transitions in ternary alloys qualitatively
agree with those of [1982Miy, 1986Miy].

[1959Phi, 2014Li, 2015Zho, 2015Zou] measured the phase equilibria in the Al rich corner between 620 and 700°C.
The phase transformations in this temperature-composition region are very complex due to the occurrence of many
invariant reactions involving ternary phases. The three-phase assemblages reported by [1959Phi, 2015Zou] agree with
the reactions scheme. [2014L1i, 2015Zho] stated that the L + a-FeAlSi + B-FeAly 5Si equilibrium was observed at 650
and 700°C. This contradicts the accepted reaction scheme according to which the L + «-FeAlSi + B-FeAly Si
equilibrium emerged below 648°C — temperature of the L + y-FeAl;Si= a-FeAlSi + B-FeAl, 5Si reaction. Above this
temperature, the L + y-FeAl;Si + a-FeAlSi region should exist. As it was already discussed in the ‘Solid Phases’
section, the discrepancies in the identification of the ternary phases are caused by the fact that they have significant
homogeneity ranges and the crystal structures of some of them are still under discussion.

The phase equilibria in the Al rich corner at 700°C are identical to those at 727°C. Therefore, the partial isothermal
section at 700°C reported by [2015Zho] is not reproduced here. At 650°C, [2014Li] determined only three
tie-triangles. As it was discussed above, the reported L + a-FeAlSi + B-FeAly sSi equilibrium is most probably
misinterpretation. This phases field was replaced by L + y-FeAl;Si + a-FeAlSi to preserve agreement with the
reaction scheme and liquidus surface. The data of [2014Li] were complemented with the three-phase equilibria
deduced from the liquidus surface and reaction scheme. These tie-triangles are shown with dashed line in Fig. 14.
Figures 15 and 16 show the phase equilibria in the Al corner at 640 and 620°C according to [1959Phi] and [2015Zou].
Small adjustments were introduced to preserve compatibility with the accepted binary phase diagrams and liquidus
surface projection.

[1987Gril, 1987Ste] reported the phase equilibria in a set of commercial Al based alloy after heat treating the as-cast
samples for one month between 570 and 600°C. The heat-treated state was referred to as ‘quasi-equilibrium’ condition
by [1987Ste]. It is to be noted that some phase equilibria, such as (Al)+f-FeAly 5Si, were derived from the
measurements on samples annealed at 570°C. [1987Pri] amended the phase equilibria of the Al corner at 600°C
reported by [1987Gril] and [1987Ste].

[1974Mur, 1981Zar] also studied the phase equilibria at 600°C. The authors presented the phase equilibria in almost
whole composition range except for Fe-rich corner. Neither primary experimental results were provided, nor
experimental procedure was specified in this work. This raises certain doubts in the accuracy of the constructed
section. There are issues with should be mentioned with respect to the results of [1974Mur, 1981Zar]. Firstly, the
authors considered Si-rich and Si-poor compositions of Fe;Al,Si; as two different intermetallic compounds.
Secondly, no phase equilibria involving the liquid phase were reported. These findings contradict the experimental
results of [1940Tak, 1951Now, 2001Kre, 2004Pon1, 2004Pon2, 2007Kre, 201 1Mar]. Thirdly, [1974Mur, 1981Zar]
did not find the Fe;Al,Sis+Fe,Als+Fe Al;; tie-triangle which was observed by [2004Bos, 2011Mar] and by
[2001Kre, 2007Kre] above and below 600°C.

Therefore, the isothermal section as-constructed by [1974Mur, 1981Zar] was significantly amended in the present
evaluation (Fig. 17). All changes are shown with dashed lines. The phase equilibria involving Fe;Al,Si; were revised
taking into account results of [2004Bos] for 727°C and [2007Kre] for 550°C. The composition of Fe;Al,Si, was
accepted according to [2011Mar]. Also, according to the reaction scheme, three-phase fields L+(Si)+FeAl;Si,,
L+FeAl;Siy+B-FeAly 5Si, and L+(Al)+B-FeAly sSi were added. In the Al-rich corner, the phase equilibria involving
o-FeAlSi, B-FeAly 5Si, y-FeAl;3Si and (Al) reported by [1974Mur, 1981Zar] agree with results of [1987Gril,
1987Ste] and compatible with the reaction scheme. Therefore, they were preserved.

As it was already discussed in the ‘Invariant Equilibria’ section, the phase equilibria between (Si), FeSi,, Fe,Al;Si;
and Fe3Al,Si, at low temperatures are inconclusive and contradictory. It would require the introduction of many
unjustified solid-phase invariant reactions to make the isothermal sections at different temperatures compatible. To
avoid such unnecessary complication, it was suggested that the (Si)+Fe,Al;Sis+Fe;Al,Siy tie-triangle reported by
[2004Bos] also existed at lower temperatures. Thus, the FeSiy+Fe,Al;Siz+Fe;Al,Siy and (Si)+FeSiy+Fe,Al;Sis
phase fields at 600°C were replaced by (Si)+Fe,Al;Siz+Fe3Al,Siy and (Si)+FeSiy+Fe;Al,Siy. The latter were also
accepted to be stable at 550°C (Fig. 18). In the previous evaluation of [2013Gho], it was stated that the Fe corner
involving the ordered phases at 600°C is taken from [1982Miy, 1986Miy]. However, [1982Miy, 1986Miy] did not
perform measurements at this temperature. Therefore, the phase boundaries in Fe corner are shown schematically.

Figure 18 shows the partial isothermal section at 550°C according to [2007Kre]. [2007Kre] stated that their section is
essentially schematical as available data on the phase equilibria have not been suggestive. The phase equilibria in the
Al corner agree with the partial isothermal section at 500°C proposed by [1984Don]. The phase equilibria in the Fe
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corner as 550°C, as well as at 450°C (Fig. 19), are accepted according to [1982Miy, 1986Miy]. As follows from
Fig. 19, the phase equilibria between the ordered phases are of the first-order at 450°C.

It should be emphasized that the low-temperature phase equilibria and transformations involving the ordered phase
require further experimental study.

Temperature — Composition Sections

Figures 20 to 29 show the vertical sections at constant concentrations of aluminium (Fig. 20), silicon (Figs. 21 to 23),
and iron (Figs. 24 to 29). The sections are adopted from different sources. To comply with the accepted reaction
scheme shown in Fig. 5, the temperatures of invariant reactions in the figures were corrected according to the reaction
scheme. The phase boundaries were adjusted to preserve qualitative agreement between the liquidus surface,
isothermal and vertical sections and compatibility with the accepted binary systems.

Fig. 20 shows the partial isopleth at 5 at.% Al redrawn for 50-95 at.% Si according to [2011Mar]. [2011Mar] actually
constructed the vertical section for the whole composition range. In our opinion, the authors simplified the phase
equilibria involving the ordered phases in view of absence of reliable experimental data. Since no detailed information
regarding this issue appeared in the literature, the Si-poor part of the isopleth was omitted in the presented evaluation.

The partial isopleths in Figs. 21 to 25 show the phase equilibria in the Al-rich corner. These sections reveal the
complexity of the phase transformations involving the liquid phase. The vertical sections isopleths at 0.7 mass% Fe
(Fig. 24) and 8.0 mass% Si (Fig. 21) are based on [1949Cru, 1959Phi] and [1959Phi], respectively. The L+(Si) phase
boundary in Fig. 21 is shown with dashed line as no reliable DTA data are available for this region. The isopleths at
10.0, 13.5 mass% Si and 5.0 mass% Fe were adopted according to the thermodynamic assessments of [2014Che] and
[2010Ele] with small correction according to accepted liquidus surface projection. Although [2010Ele] and
[2014Che] calculated their partial section using their own thermodynamic assessment, the calculated phase fields
agree well with the reactions scheme and liquidus surface accepted in the present work.

Figs. 26 to 29 show isopleths at 27, 35, 40, and 50 at.% Fe. These sections were presented by [2011Mar] and redrawn
in the present evaluation but with certain amendments. In Figs. 26, 27, and 28, the phase equilibria near the Al-Fe side
were modified to preserve compatibility with the binary system and the reaction scheme accepted in the present work.
For the isopleth at 27 at.% Fe (Fig. 26), the U, reaction was introduced that was required to have agreement with the
isothermal sections presented by [2011Mar]. This reaction was probably overlooked by [2011Mar] in their original
work. For the isopleth at 50 at.% Fe (Fig. 29), the order-disorder transition was included. The corresponding phase
boundary should be considered as tentative as no corresponding data are available to confirm our suggestion. The
isopleth at 60 at.% Fe presented by [2011Mar] was not accepted here. This section involves the phase equilibria
between different ordered phases that are still to be clarified. For the same reason, we did not distinguish between the
ordered phases in Figs. 27 to 29 and denoted them as “Ord”. Also, no attempts have been made to draw the phase
equilibria below 800°C because of the absence of the accurate experimental data for lower temperatures (see,
“Invariant Equilibria” section).

There have been extensive studies of order-disorder transitions of Fe-rich ternary alloys, both experimentally and
theoretically. Some of the studies related to this topic by [1946Sel, 1951Sat, 1969Pol, 1973Kat, 1977Nicl, 1977Nic2,
1977Suw, 1982Cha, 1983Gle, 1983Sch, 1986Tak, 1987For, 1987Dob] were discussed by [1988Ray, 2013Gho]. The
solid solubility and the magnetic behavior of Fe;(Al, Si) were correlated with the electron-atom ratio [1977Nic1] and
[1977Nic2]. The ordered phases Fe;Al and Fe;Si which have D05 or BiF; type order and FeAl and FeSi which have
B2 or CsCl type order along the Fe;Al-Fe;Si section were studied by means of high temperature X-ray diffraction and
recording the disappearance of D05 superlattice reflections as a function of temperature and composition [1969Pol,
1973Kat]. [1946Sel] measured the lattice parameter of alloys up to 13 mass% Al and 18 mass% Si, and observed an
inflection point in the lattice parameter versus composition curve which was attributed to the ordering transition and
the formation of Fe;(Al,Si) having D05 superstructure. These results were further supported by the specific heat
measurements as a function of Si/Al ratio by [1951Sat], who found the transformation is accompanied by a small
change in Gibbs energy suggestive of a second-order type. However, with the addition of Si in Fe;Al the ordering
energies increase monotonically [1973Kat]. The order-disorder transition along Fe;Al-Fe;Si was also studied by
transmission electron microscopy (TEM) [1982Cha] and by magnetic method [1986Tak].

Despite these results, there is still some controversy regarding the sequence of ordering transitions along this section.
This issue has not been yet solved. Previous studies by [1969Pol] and [1973Kat] indicate that the sequence of ordering
transition (on cooling) is always (#0Fe) ~ FeAl -~ Fe;Al along the entire Fe; Al-Fe;Si section. However, recent studies
by [1982Cha] and [1986Tak] indicate that substitution of more than 50% of the Al atoms by Si atoms (c0Fe)
transforms directly into D05 structure (Fe3Al). The effect of Si on the ordering induced phase separation around Fe; Al
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has not been investigated in detail. But it is important to note that [1996Mor] observed (adFe) + Fe;Al microstructure
in an Fe-17Al-1Si (at.%) alloy in the temperature range of 400 to 600°C.

The results of [1969Pol] also indicate that Fe;(Al, Si) and liquid should be in equilibrium along the Fe;Al-Fe;Si
section at 12.5 at.% Si. However, the nature and type of the phase equilibria between the ordered phases and liquid
are not clarified. Even though the nucleation and growth of Fe;Al domain in FeAl domain is easier than in (z0Fe)
matrix, the direct («dFe) = Fe;Al transformation in certain composition range has been attributed to the lowering of
atomic potential energy where Al atoms are substituted by Si atoms. This causes the formation of different types of
anti-phase boundaries and the corresponding changes in dislocation configuration leads to double dissociation of
superlattice dislocations [1982Cha]. Depending on the composition of an alloy, the nucleation of ordered phases may
also take place in the melt. TEM and M&ssbauer spectroscopy study [1983Gle] in an Fe-5.4A1-9.6Si (mass%) alloy
revealed that the B2 type of ordering takes place directly in the melt which subsequently undergoes D05 ordering.
However, [1969Pol] observed that the D05 superlattice reflections persist up to the melting point in an alloy of Fe;Al
+ 12 at.% Si. A similar conclusion was also made by [1954Gar] who investigated the order-disorder transition, after
quenching from different temperatures, in an Fe-9.7Si-5.5Al (mass%) alloy. By rapid quenching an Fe-5.4A1-9.6Si
(mass%) alloy, [1983Gle] observed that excess vacancies are introduced which occupy ordered sublattice positions,
giving rise to a new crystallographic superstructure of the D05 type.

Mossbauer spectroscopy study of Fe;3Al;;Si;¢ (ALSIFER27) and FeggAl,,Siy (ALSIFER32), by [1977Suw],
revealed that excess diamagnetic atoms (Al and Si) preferentially occupy the Fe site at (0, 0, 0) in the D05 lattice. They
argued that powder methods used in X-ray diffraction experiments may not represent the ordering transitions in the
bulk materials. Later, measurements of on-site magnetic moment by neutron diffraction, and also the Mdssbauer
spectroscopy data suggest that the excess Al and Si atoms occupy the Fe-site at (1/4, 1/4, 1/4) in the D05 lattice
[1987Dob]. Mssbauer spectroscopy results indicate that ‘order-annealing’ treatment is accompanied by a separation
of Fe;Al and Fe;Si types of local surroundings [1983Sch]. However, this has only weak influence on the physical
properties, and the predominant factor being the composition of the alloy.

In their review, [1988Ray] summarized the experimental data of [1969Pol] and drew the Fe;Al-Fe;Si section that
should be considered as simplified. [2013Gho] proposed the modified Fe; Al-Fe;Si section that however also presents
a simplified representation of the phase transitions and does not agree with the Fe-Si system adopted here. For these
reasons, this section was not included in the present evaluation.

Thermodynamics

Thermodynamic properties of ternary alloys have been investigated a number of times by measuring the heat of
formation of solid alloys [1937Koe, 19370¢l], activity measurements in liquid alloys [1969Bed, 1970Mit, 1973Nag,
1973Per, 1980Sud, 1984Ber, 1985Cao, 1989Bon, 2004Kan], heat of mixing of liquid alloys [2003Kan], and the
standard heat of formation of ternary intermetallics [1997Vyb, 2000Li1, 2000Li2].

[1969Bed] determined the activity coefficients at several constant mole fraction ratios (xg;/xg.) at 1627°C. Activity
of Al in liquid alloys in the temperature range of 800 to 1100°C were reported by [1973Nag], and at 900°C by
[1973Per]. [1980Sud] reported activity of Al in an Al-Fe-1Si (mass%) alloy at 1485 and 1546°C. Additional
experiments were also carried out by [1984Ber] and [1989Bon]. The latter authors measured the chemical potential
of Al in alloys containing up to 11.8 at.% Fe and 23.7 at.% Si by the concentration cell method in the temperature
range of 577 to 1027°C. The activities of Al show a negative deviation from the ideal behavior. The results of
[1984Ber] also show a similar trend. The activity of Al in Fe(Alyg79Sip.121)1- 0.0249 < x < 0.0512, shows a
transition from positive to negative deviation from the ideal behavior at x = 0.035 [2004Kan].

Recently, [2003Kan] measured the heat of mixing of liquid alloys at 1477°C using a high-temperature isoperibolic
calorimeter. Some selected data is listed in Table 4, while several isoenthalpic (mixing) lines are plotted in Fig. 30.

Heat of mixing of solid alloys was measured by pouring liquid Al-Si alloy and liquid iron into a calorimeter [1937Koe,
19370e¢l]. However, the state of equilibrium in these experiments is uncertain [1999Liu]. The standard heat of
formation of ternary intermetallics, except Fe,Al;Sis, has been determined by solution calorimetry by [1997Vyb],
[2000Li1] and [2000Li2]. These results are summarized in Table 5. [1997Vyb] used 99.99% Al, 99.9% Fe and
99.99% Si to prepare single phase a-FeAlSi and B-FeAl, 5Si samples by annealing cast ingots either at 550°C
(a-FeAlSi) or at 600°C (B-FeAly sSi) for 1 month. They used an aluminum bath at 1070°C for solution calorimetry.
[2000Lil1, 2000Li2] used 99.99% Al, 99.999% Fe and 99.999% Si to prepare the intermetallics. Levitation melting
followed by annealing, the conditions of which varied, were employed to obtain single phase alloys of Fe;Al,Sis,
o-FeAlSi and t; [2000Lil], and y-FeAl;Si, FeAl,Si, FeAl;Si,, B-FeAl, 5Si, and Fe;Al,Siy [2000Li2]. Unlike
[1997Vyb], [2000Lil, 2000Li2] used an aluminum bath at a lower temperature of 800°C for solution calorimetry.
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There are differences between the results of [1997Vyb] and [2000Lil1, 2000Li2]. For example, [1997Vyb] reported
that the standard heat of formation of a-FeAlSi (Fe g ,Aly; 5Sig ¢) and B-FeAly 5sSi (Fe5 4Algg 5Sijs 4) are —34.3 + 2
and —24.5 + 2 kJ-(g—at)_l, respectively. The corresponding values are —24.44 + 1.387 kJ-(g—at)_1 for a-FeAlSi at
Fe gAl7,Si;o [2000Li1] and —20.209 + 0.926 kJ -(g-at)‘1 for B-FeAly 5Si at Fe;sAly(Si;s [2000Li2]. Even though the
o-FeAlSi and B-FeAly 5Si compositions of [1997Vyb] and [2000Li1, 2000Li2] are not identical, large differences in
heat of formation are unexpected. Apparently, [2000Li1, 2000Li2] were unaware of the results of [1997Vyb], and
they did not discuss this discrepancy. Nonetheless, it is not clear if a higher bath temperature (causing oxidation) and
relatively impure starting materials used by [1997Vyb] compared to [2000Lil, 2000Li2] have contributed to more
negative heat of formation. [2010Du] calculated formation energy of FeAl5Si, and Fe;Al,Siy using first-principles
methods. Their calculated results agree within +5 kJ/mol-atoms with the experimental values of [2000Li2].

[1994Ang] determined the enthalpy of fusion of FeAl;Si, and Fe,Al;Sis5.

Thermodynamic modeling of the ternary system has also been carried out by the CALculation of PHase Diagram
(CALPHAD) method [1994Ang, 1995Gue3, 1998Kol, 1999Liu], where the Gibbs energies of the relevant phases are
described by simple analytical functions. [1949Cru] reported calculated solubility isotherms of Fe and Si in solid (Al).
They suggested the formation of a ternary compound Fe,Al;Si whose composition is close to the a-FeAlSi phase at
low Si content. On the other hand, their calculation seems to suggest the ternary phase FeAlsSi that is close to the
B-FeAl, 5Si phase [1981Riv]. Calculation of the liquidus surface from a purely thermodynamic approach [1946Phi2]
seems to produce good result near the binary edges. However, their approach can neither predict the composition of
the precipitating phase nor calculate the solidus curves.

[1994Ang] employed the CALPHAD technique and calculated two vertical sections corresponding to x 5j/xg;=3/1 and
at xg; = 0.85. [1995Gue3] calculated two partial isothermal sections at 600 and 900°C, and a vertical section at
xg; = 0.78 by the CALPHAD method. They considered only two ternary phases: FeAl;Si, and FesAlgSi;. In our
classification, these correspond to FeAl;Si, and Fe,Al;Si3, respectively.

[1998Kol] and [1999Liu] carried out detailed thermodynamic assessments of the ternary system by the CALPHAD
method. [1998Kol] considered six ternary phases that in our classification correspond to a-FeAlSi, B-FeAly 5Si,
FeAl;Si,, y-FeAl;Si, FezAl,Sis, and FeAl,Si. In their CALPHAD modeling, [1999Liu] considered seven ternary
intermetallics that correspond to Fe;Al,Sis, y-FeAl;Si, FeAl,Si, FeAl;Si,, a-FeAlSi, f-FeAly 5Si, and Fe,Al;Si; in
our classification. [1999Liu] argued that y-FeAl;Si and FeAl,Si have very similar Fe contents, and wondered, if they
are the same phase with a small homogeneity range. This view was also accepted by [2002Rag]. However, as
summarized in Table 2, y-FeAl;Si and FeAl,Si have different crystal structures. [1999Liu] computed the liquidus
surface, isothermal sections at 600 and 1000°C, and vertical sections at 1.3, 2, 5, 10 mass% Fe and 2 mass% Si.

[2008Du] also performed CALPHAD modeling of the system considering ten ternary intermetallics (Fe3Al,Sis,
y-FeAl3Si, FeAl,Si, FeAl3Si,, a-FeAlSi, B-FeAly 5Si, Fe,AlSi;, FesAl,Siy, T and Fey ;Al,Si). They reported
liquidus surface, reaction scheme, isothermal sections at 550, 727, 800°C, vertical sections at 15 mass% Fe, 10 mass%
Si, and at a constant ratio of w(Fe)/w(Si)=0.133. More recently, [2010Ele] re-assessed Al-corner of the system using
the CALPHAD approach. They considered four ternary intermetallics: o-FeAlSi, B-FeAly 5Si, y-FeAl;Si and
FeAl;Si,. They reported following calculated results: (i) liquidus surface of Al-corner, (ii) isothermal sections at 590
and 727°C, and (iii) vertical sections at 13.5 mass% Si and 5 mass% Fe.

In the CALPHAD modeling by [1994Ang, 1998Kol, 1999Liu, 2008Du, 2010Ele, 2014Che] of the ternary system,
several sublattice models have been used to describe Gibbs energy of ternary intermetallics. For example, [1994Ang]
used a three-sublattice model for FeAl;Si, and Fe,Al;Si3. [1998Kol] used a four-sublattice model for the o-AlFeSi
phase while a three-sublattice model for other compounds considered in the study. On the other hand, [1999Liu] used
a three-sublattice model for Fe;Al,Si3, y-FeAl3Si, FeAl,Si, FeAl;Si,, and Fe,Al;Si3, while a four-sublattice model
for B-FeAl, 5Si and a-FeAlSi. [2008Du] used a two-sublattice model for Fe;Al,Sis, y-FeAl;Si, FeAl;Siy, Fe,Al;Sisg
and Fe;Al,Siy, while a three-sublattice model for FeAl,Si, a-FeAlSi, P-FeAl, sSi, t; and Fe;;Al4Si. Later,
[2014Che] improved this assessment by taking the data of [2007Kre] into account. [2010Ele] used a four-sublattice
model for all four ternary phases mentioned above. Notwithstanding these differences, the heat of formation of ternary
intermetallics calculated by CALPHAD method agree reasonably well with available calorimetry data.

Theoretical analysis of phase separation involving the ordered (Fe;Al, FeAl) and disordered (c0Fe) phases was
carried out by [1991Fuk, 1994Koz]. They described free energy of ternary alloys using a statistical model that uses
pair-wise interaction up to second nearest neighbor. Both chemical and magnetic interactions based on
Bragg-Williams-Gorsky model were used. The calculated phase diagrams are found to be consistent with the
experimental ones. These theoretical studies underscore the influence of ferromagnetic ordering on phase separation.
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Also, [2010Ele] reported calculated isothermal section of Al-corner at 727°C. Since [2010Ele] considered only four
ternary phases (y-FeAl;Si, FeAl,Si, FeAl;Si, and a-FeAlSi), their calculated isothermal section of Al-corner at
727°C does not show phase fields involving Fe,Al;Si5, 11 and Fe; ;Al4Si phases.

[2010Fri] employed first-principles methods to calculate structural and elastic properties of D03-Fe;Al alloyed with
Si. Substitution of Si at both Fe and Al sites is associated with a decrease in formation energy and an increase in
Young's modulus.

[2010Mal] proposed thermodynamic and kinetic arguments for the formation of ternary phases during rapid
solidification of Al-Fe-Si alloys. [2010Mor| modeled microsegregation and precipitation of ternary intermetallics.
Their model considers a-FeAlSi and B-FeAl, 5Si phases, and an effective interdiffusion coefficient in solid (fcc-Al)
and liquid phases.

[2011Spr] investigated interdiffusion between an Al-5 mass% Si alloy and a mild steel at 600 and 675°C using optical
microscopy, SEM, Electron backscatter diffraction (EBSD), orientation imaging (OIM), XRD, analytical TEM,
scanning transmission electron microscopy (STEM). In the interdiffusion zone, they observed Fe;Al,Sis, FeAl,Si,
a-FeAlSi and p-FeAly 5Si phases, and confirmed that the addition of Si to Al retard growth of a-FeAlSi phase.

[2014Ami] performed density functional theory (DFT) calculations for the intermetallic phase FeAl;Si, which is
stable in the Al-Fe-Si system up to the temperature of 875°C and they also determined the heat capacity of this phase
by DSC measurement.

[2019Zie] calculated the heat capacity of Fe,Als, FesAlg and FeAl;Si, by an algorithm based on zero-Kelvin
properties (¥, By), the Debye temperature and the thermal expansion coefficient at the Debye temperature.

Notes on Materials Properties and Applications

A summary of experimental investigation of properties is given in Table 6. [19510gal, 19510ga2, 1983Sch] reported
the ferromagnetic behavior of Fe;Al-Fe;Si alloys. [1968Arul, 1968Aru2, 1970Aru] reported that the occupation of
ordered sites by all three Al, Fe and Si atoms accompanied with a minimum in electrical resistivity at Fe;5Al;gSi;.
[1996Szy] reported that dissolved Al in FeSi, increases its magnetic susceptibility, and both FeSi and FeSi, exhibit
Van Vleck paramagnetism even at very low temperature (up to 4.2 K). [1996Fri] and [1998Dit] studied the
metal-insulator transition in Al doped FeSi. [1998Dit] reported lattice constant, thermoelectric effect, Hall effect,
electrical conductivity, magnetic susceptibility, specific heat and magnetoresistance in FeSi;_ Al with 0 < x < 0.08.
All these properties confirm a metal to insulator transition of FeSi, which is otherwise a Kondo insulator. [19990ht]
have reported that doping of FeSi, with 3 at.% Al improves its thermoelectric figure of merit. [1986Tak] and
[1988Dor] have discussed magnetic properties of ternary alloys. However, recent studies of magnetic properties due
to Si/Al substitution in Fe;5Aly5, FesgAlsyy and FegyAlyg alloys using Mossbauer spectroscopy and X-ray diffraction
by [2010Leg] demonstrate a complex interplay between atomic ordering and magnetic heterogeneity. [2010Ma]
studied electronic structure of D05-FesAl,_,Si, alloys using first-principles methods. As Al is replaced with Si, both
lattice parameter and saturation magnetization decrease linearly. Associated change in magnetic properties is related
to changes in local moment of Fe caused by its local environment causing charge transfer and bonding type as
demonstrated by Mulliken charge analysis.

[1993Sch] investigated the plastic deformation of single-crystal Al,jFe-5Si5 alloy as a function of temperature. The
critical resolved shear stress exhibits a non-monotonic behavior with a maximum around 530°C. The non-monotonic
behavior was correlated with the temperature-dependent dislocation mobility rather than a decrease in D05 long-range
order parameter. [1996Cho, 2001Cho] reported the microstructure, hardness and tensile properties of Al-5 mass%
Fe-16 mass% Si alloy, processed by powder metallurgy, up to 520°C.

[2003Cie] observed Portevin-Le Chatelier Effect in biaxially strained Al-Fe-Si foils. This effect is attributed to the
diffusion of Si rather than Fe, as the latter has much slower diffusivity and low solubility in (Al). [2003Mur] reported
the hardness and indentation fracture toughness of y-FeAl;Si and a-FeAlSi phases, both have hardness much higher
than binary aluminides and they have very similar indentation fracture toughness.

[1948Jen] demonstrated a relationship between the constitutional diagram and the susceptibility to cracking of the
Al-Fe-Si alloys. A key factor in determining the corrosion behavior of Al rich alloys is the Fe/Si ratio. At a low Fe/Si
ratio, ternary alloys exhibit better corrosion resistance in both industrial and marine environment [2000Bha].

[2012Leg] reported the influence of different Al/Si ratios on the magnetic and structural properties of Fe;5Alys  Si,,
Feq0Al3o_,Si, and FegyAlyo_,Si, alloys. The results indicated that addition of Si to binary Al-Fe alloys makes the
disordering more difficult. The magnetic measurements indicate that addition of Si to binary Fe;5Al,5 and Fe;¢Als
alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.
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[2015Che] measured the thermal and electrical conductivity of the gravity castings of the Al-10Si-Fe alloy. It was
shown that the thermal conductivity was affected by several factors, such as microstructures, composition, and
distribution of each phase.

[2017Raj] investigated the phase fractions, microstructure and thermoelectric properties of FeSi, with different
aluminium concentrations. The results illustrated that the Al-doping in Si dispersed FeSi, results in the increased
hole-carrier concentration thereby enhancing the electrical conductivity without compromising the Seebeck
coefficient.

Miscellaneous

In recent years, the solidification of Al rich ternary alloys has been investigated rather extensively.

[1983Per] discussed the effect of metastable liquid miscibility gaps, metastable eutectic and metastable peritectic on
the rapid solidification processing and alloy design. Addition of up to 0.11 mass% Fe in an Al-0.5Si (mass%) alloy is
reported to favor the formation of the metastable phase FeAlg [1978Suz].

[1995Bel] proposed a non-equilibrium solidification method to analyze the cast microstructure of ternary alloys. This
method utilizes equilibrium phase diagram, but assumes that the peritectic reactions are suppressed and the eutectic
reactions occur according to the equilibrium phase diagram. The role of heterogeneous nucleation on phase selection,
solidification, and grain refinement of Al has been investigated in detail [1996All, 1997All, 1997Can, 2004Kha].
In particular, [2004Kha] investigated the nucleation potency of Al on the surface of MgO, TiB,, TiC, a-Al,03 and
SiC inclusions. They showed that in dilute hypoeutectic alloys (Al+Fe less than 1.5 mass%) these inclusions act as
efficient grain refiner caused by a decrease in liquid/inclusion interfacial energy due to the segregation of Si.
[2005Kha] investigated heterogeneous nucleation of ternary intermetallics (FeAl;Si,, a-FeAlSi, B-FeAl, 5Si) on the
surface of CaO, MgO, TiB,, TiC, Al4C;, a-Al,03, y-Al,05 and SiC inclusions. They found that reactive inclusion
such as CaO and SiC are potent nucleants for the intragranular ternary intermetallics. Also, the potent nucleants for
the primary phase, (Al), such as y-Al,03 exhibit poor potency for the nucleation of ternary phases. [2002Dut]
reported the effect of cooling rate on the amount of ternary eutectic, and also the effect of Fe/Si ratio on the
morphology of intermetallics in cast Al alloys.

[1997Sto] studied the effect of cooling rate and solidification velocity on the microstructure selection of Al-3.5Fe-(1
to 8.5)Si (mass%) alloys by wedge chill casting and Bridgman directional solidification techniques. In the latter case,
the front growth velocity was in the range of 0.01 to 2 mm-s~! under a temperature gradient of 15°C-mm™". Also, at
front velocities greater than 1 mm-s™', the primary intermetallics were suppressed. The results of Al-3.5Fe-8.5Si
(mass%) were summarized in terms of a kinetically based solidification microstructure selection diagram.

[1999Tay] applied Scheil equation to predict the defect-onset (porosity) during solidification of Al rich alloys as a
function of Fe and Si contents. The effect of Fe and other elements on the porosity of hypoeutectic Al-Si castings has
also been discussed by [2005Lu]. Taylor et al [1999Tay] found that a defect-free casting can be obtained if the
solidification proceeds directly to the invariant reaction E; (L < B-FeAl, 5Si+ (Al) + (Si)), whereas poor casting may
result when the solidification proceeds via the (Al)-B-FeAly 5Si eutectic valley. The critical Fe content at which the
porosity is minimized is a function of Si content in the alloy. [2001Sha] also carried out Bridgman directional
solidification of a model 6xxx alloy (Al-0.3Fe-0.6Si-0.8Mg (mass%)), and obtained solidification front velocity in
the range of 5 to 120 mm-min_. They observed two ternary phases, a-FeAlSi and B-FeAly 5Si, of which the latter is
metastable. At low front velocity, such as 30 to 60 mm-min‘l, B-FeAl, 5Si dominate the microstructure, while at high
front velocity, such as 120 mm'min ", B-FeAl, 5Si dominates the phase selection. Hegde and Prabhu [2008Heg] have
discussed possible mechanisms of grain refinement in Al-Fe-Si casting alloys.

Since both Al-Fe and Fe-Si binary systems form vy loops, a ternary y loop is expected. [1931Wev] reported the
coordinates of the phase boundaries of the ternary y loop and these are listed in Table 7. [1960Voz] reported the effect
of impurities on the solid solubility of Al alloys by means of electrical resistivity. [1972Ere] studied the dissolution
kinetics of Fe in Al-Si melts at 700, 750 and 800°C, the kinetics of which was correlated with the formation of various
intermediate phases.

[2000Sri] reported synthesis of bulk ternary intermetallics using elemental powder mixture by self-propagating high
temperature synthesis. They used cold compacted powder mixtures that were heated to 650°C in a vacuum furnace.
Both stable (y-FeAl;Si, a-FeAlSi and B-FeAly, 5Si) and metastable phases were obtained in this process. They also
reported hardness of the intermetallics.

[1998Akd] proposed that the value of activity coefficient of Al in («dFe) alloys has a strong influence on the
formation and growth kinetics of interfacial diffusion layer. [19990ht] have discussed the sintering mechanism of
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Al-Fe-Si alloys, particularly the role of liquid phase, in the context of fabricating an Al doped FeSi, phase. [2001Jha]
has discussed the diffusion path of Al in ternary bcc alloys.

[2004Kaj] calculated time-temperature-precipitation diagram of a-FeAlSi during processing of an Al-0.51Fe-0.07Si
alloy employing heterogeneous nucleation theory within Johnson-Mehl-Avrami formalism by considering stored
energy including the effects due to recovery and recrystallization. [2005Bar] developed a model for Si and Al
diffusion in iron by reducing coupled system of diffusion equations to a single partial differential equation. They
predicted diffusion paths at 800 and 1100°C during galvanizing process. [2005Lu] reported that addition of Sr
changes the mode of eutectic nucleation, depresses the precipitation temperature of 3-FeAly 5Si, while addition of Mn
suppresses the formation of coarse B-FeAly sSi replaces it with more compact and less harmful a-FeAlSi phase.
[2009Gom] discussed the roles of Al and Si in designing TRIP (TRansformation Induced Plasticity) steels.

[2011Leel, 2011Lee2] investigated the effects of Fe content and cooling rate on the solidification path and formation
behavior of the B-FeAl,sSi phase in two Fe-containing eutectic and hypoeutectic Al-Si alloys based on
thermodynamic analysis and pertinent experiments.

[2017Tod] studied the effect of ultrasonic melt treatment (USMT) on macro-segregation and primary Fe-containing
intermetallic peritectic transformations in an Al-19 mass% Si-4 mass% Fe alloy. USMT had a significant impact on
the constitution of the primary Fe-containing intermetallics, where complex particles of FeAl;Si,/B-FeAly 5Si were
prominent without USMT, while few FeAl;Si, particles were observed after USMT and the primary Fe-containing
intermetallics existed mostly as the single-phase f-FeAl, 5Si. It also leads to enhanced peritectic transformation
FeAl;Si, ~ B-FeAly sSi due to the significant reduction in the average size of the primary FeAl;Si, particles.

[2020Zha] investigated the microstructural evolution of an as-cast Al-7Si-2Fe alloy by optical microscope (OM) and
SEM/EDS and thermodynamic calculations.
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[1967Mun] EPMA, TEM, XRD Al-rich alloys, (Fe + Si) < 22 mass%, Al = bal.

[1967Sun] Chemical analysis, XRD Al-rich alloys
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[1969Pol] High-temperature XRD, resistivity 15 Fe-rich alloys, Fe3(ALSi;_), 0 < x < 1,
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[1970Mit], Galvanic cell 35 Al-rich alloys with Fe/Si ratio (in mass%) 0.133,

[1973Nag] 0.338, 0.561, 1, 1.667, 3.04, 6.94, activity of Al in
liquid alloys, 785-1100°C

[1973Kat] High-temperature XRD 15 Fe-rich alloys, Fe5(ALSi;_), 0 <x < 1,
order-disorder transition, up to 1325°C

[1974Mur] XRD Crystal structure and homogeneity ranges of
Fe;Al,Sis, Y-FeAl;Si, FeAl,Si, FeAl;Si,, a-FeAlSi,
B-FeAly 5Si, Fe,Al;Sis, FesAlySiy, Fe 7A1Si

[1977Nicl], NMR, magnetometry, XRD Fe;(AlSii_), x=0,0.04,0.08, 0.15, 0.25, Fe;Al

[1977Nic2] phase

[1977Suw]  Maossbauer spectroscopy Fes3Al;1Si;4 and FeggAly,Si;, FesAl phase

[1979Bur] XRD, magnetic measurements FesAlLSi;_,at0<x <1

[1979Cow]  XRD 16 alloys of Fe3(AlSi;_,), 0 < x < 1, Fe;Al phase

[1980Sud] Galvanic cell Activity of Al in an Fe-1 mass% Al-1 mass% Si alloy
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[1981Zar] XRD Isothermal section at 600°C
[1982Cha] TEM Fe3(Alg 39551 ¢0g), order-disorder transitions
[1982Miy] TEM 20 Fe-rich alloys, Al = 0.5-33 at.%, Si=2.8-15.1
at.%, Fe = bal., 450-700°C, order-disorder transitions
[1983Gle] TEM, Mgssbauer spectroscopy Fe-5.4A1-9.6Si (mass%), order-disorder transitions
[1983Sch] Mossbauer spectroscopy 8 alloys along Fe;Al-Fe;Si, Fe;Al phase
[1984Ber] Galvanic cell Al-2.5Fe-6Si (mass%) alloy, activity of Al,
660-900°C
[1984Don] TEM 3 Al-rich alloys, Fe = 0.21-0.6 mass%, Si=0.14-0.59
mass%, Al = bal., 400-600°C
[1986Miy] Hardness, TEM 20 Fe-rich alloys, Al = 0.5-33 at.%, Si=2.8-15.1
at.%, Fe = bal., 450-700°C, order-disorder transitions
[1986Tak] Magnetometry Fe;(AlSiy_,) alloys, order-disorder transitions
[1987Dob]  Neutron diffraction, Mossbauer spectroscopy Fe;z gAly 9Sips 5, Feg gAls ¢Sisg 4 and
Fegg 4Al7 58153 4, FezAl phase
[1987Gril] DTA, EPMA, XRD Al-rich alloys, Fe = 18-35 mass%, Si = 4-12 mass%,
Al =bal., 600°C
[1987Ste] SEM, EPMA, XRD 9 Al-rich alloys, Fe = 17.8-34.9 mass%, Si=3.9-14.1
mass%, Al =bal., 570-600°C
[1988Zak] DTA, XRD 15 Al-rich alloys, Fe = 1-3 mass%, Si = 10-14
mass%, Al = bal., Al corner liquidus surface and
vertical sections
[1989Bon] Galvanic cell Al-rich alloys, Fe = 3.6-11.8 at.%, Si = 6.9-23.7 at.%
Si, Al = bal., activity of Al in liquid alloys
[1989Ger2]  Single crystal XRD Crystal structure of FeAl,Si
[1994Ang] Calphad modeling Vertical sections at x/xg;=3/1 and at xg; = 0.85
[1995Gue3] Calphad modeling Isothermal and vertical sections
[1996Mor] DSC, TEM Feg,Al7Si, TEM, order-disorder transitions
[1996Szy] XRD, magnetic susceptibility, Mossbauer ~ FeAl Si,  atx =0-0.06
measurements
[1996Yan] XRD Crystal structures of Fe;Al,Si5 and Fe;Al,Siy
[1997Vyb] Calorimetry Heat of formation of a-FeAlSi and f-FeAly 5Si
[1998Han] Single crystal XRD Crystal structure of B-FeAl4.5Si
[1999Liu] Calphad modeling Isothermal and vertical sections, reaction scheme
[2000Li1] Calorimetry Heat of formation of Fe3Al,Sis, y-FeAl3Si, FeAl,Si,
[2000Li2] FeAl;Si,, a-FeAlSi, B-FeAly 5Si, Fe3Al,Siy, and 1
[2000Zhe] TEM Crystal structure of B-FeAl4.5Si
[2001Kre] SEM, EDX, powder XRD 100 alloys containing up to 50 at.% Fe, isothermal
section at 550°C
[2002Gup] EPMA Diffusion couples, 1020-1115°C
[2002Mai] EPMA Diffusion couples, 600-900°C
[2003Gjo] TEM Crystal structure of B-FeAly 5Si
[2003Kan] Calorimetry Heat of mixing of liquid alloys at 1477°C
[2004Bos] XRD, OM, SEM/EPMA, DTA Isothermal section at 727°C, temperature of
formation of 1,
[2004Kan] Galvanic cell Fe (Alj 7951 121)1-y 0.0249 < xp, <0.0512, activity
of Al in liquid alloys
[2004Ponl]  Optical microscopy, SEM/EPMA, DTA, 18 ternary alloys, solid-liquid phase equilibria at
[2004Pon2]  XRD 727°C
[2004Sug] Single crystal XRD, SEM/EPMA Crystal structure of y-FeAl;Si
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[2007Kre] Powder XRD, EDX, SEM, DTA More than 80 alloys containing up to 50 at.% Fe,
isothermal section at 550°C, reaction scheme and
partial liquidus surface

[2008Du] Calorimetry and first-principles calculations Heat of formation ternary intermetallics

[2008Du] Calphad modeling Isothermal, vertical sections, liquidus surface and
enthalpies of formation of phases

[2010Ele] Calphad modeling Liquidus surface of Al-corner, isothermal sections at
500 and 727°C, vertical sections at 13.5 mass% Si
and 5 mass% Fe.

[2010Mak] SEM/EDS Aluminization of mild steel at 600°C.

Fe;Al,Si3 and y-FeAl;Si phases

[2011Leel]  Optical microscopy, SEM/EDS The effects of Fe content and cooling rate on the
solidification path and formation behavior of the
B-FeAly 5Si phase in two Fe-containing eutectic
Al-Si alloys

[2011Lee2]  SES, OM, SEM/EDS, thermal analysis, The effects of Fe content and cooling rate on the

thermodynamic calculations solidification path and formation of the B-FeAl, 5Si
phase in two Fe-containing hypoeutectic Al-Si alloys.

[2011Mar] DTA, EPMA, SEM and XRD 73 ternary alloys, isothermal sections at 800 and
900°C, vertical sections, and a partial reaction
scheme

[2011Rogl] XRD, DTA Crystal structure temperature of formation of
a-FeAlSi

[2011Rog2] XRD Single crystals of y-FeAl;Si

[2011Spr] OM, SEM, EBSD, and STEM Interdiffusion between Al-5 mass% Si and mild steel
at 600 and 675°C. Fe3Al,Si3, FeAl,Si, a-FeAlSi and
B-FeAly 5Si in the interdiffusion zone

[2013Zha], EPMA Effects of ultrasonic treatment (USMT) and cooling

[2017Tod] rate on morphology and composition of
iron-containing intermetallic compounds were
investigated by EPMA

[2014Ami] DFT, DSC Heat capacity of FeAl;Si,

[2014Che] Calphad modeling Based on the work of [2008Du], vertical section at 5
mass% Fe, vertical section at 10 mass% Si, vertical
section at 13.5 mass% Si, liquidus surface in Al-rich
corner, liquidus surface over entire composition
range, vertical section at 35 mass% Fe

[2014Hao] XRD, SEM/EDS, EPMA 2 Al-rich alloys, as-cast alloys analysis, vertical

Calphad modeling section at 13.5 mass% Si in the Al-rich corner,
liquidus projection in Al-rich corner

[2014Li] XRD, SEM/EDS 3 Al-rich alloys, isothermal section of the Al-rich
corner at 650°C

[2015Zho] XRD, SEM/EDS 5 Al-rich alloys, isothermal section of the Al-rich
corner at 700°C

[2015Zou] XRD, SEM/EDS 5 Al-rich alloys, isothermal section of the Al-rich
corner at 600°C

[2016Leg] XRD, Méssbauer spectroscopy, magnetic  Intermetallic Fe;5Aly5_, Si alloys (x =7.5, 12.5, 17.5,

measurement 25), annealed at 770°C for 2 h then cooled down to
570°C and kept there for 10 h
[2016Li1] XRD, SEM/EDS 4 Al-rich alloys annealed at 700°C
[2016Yu] TEM/EDX Intermetallic phases in Al-10Si-0.3Fe alloys,

y-FeAl;Si and a-FeAlSi
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Reference Method/Experimental Technique Temperature/Composition/Phase Range Studied

[2017Tod] SEM/EDS Effect of the ultrasonic melt treatment on
macro-segregation and intermetallic transformations
of Al-19Si-4Fe alloys

[2019Bec] SEM/EDS, EBSD, TEM Crystal structure characteristics of coexisting
FeAl;Si, and -FeAly sSi phase were investigated in
a purely intermetallic Al-Fe-Si alloy

[2019Zie] Calculated by an algorithm Heat capacity of Fe,Als, FesAlg and FeAl;Si,,
calculated by an algorithm based on zero-Kelvin
properties (¥, By), the Debye temperature and the
thermal expansion coefficient at Debye temperature

[2020Zha] OM, SEM/EDS, Thermodynamic The microstructural evolution of an as-cast

calculations

Al-7Si-2Fe alloy

Table 2: Crystallographic Data of Solid Phases

Phase/ Pearson Symbol/  Lattice Comments/References
Temperature Space Group/ Parameters
Range (°C) Prototype (pm)
(AD) cF4 a=404.96 pure Al at 25°C [Mas2]
<660.452 Fm3m solubility for Fe (the Al-Fe system): 0.023 at.%
Cu [2019Ran]
solubility for Si in (the Al-Si system): 1.5 at.%
[2004Luk]
(0OFe) cl2 Strukturbericht designation: 42
<1540 Im3m [2007Ste]
w
aFe a=286.65 at 25°C [Mas2]
<912
OFe a=293.15 [Mas2]
1538 - 1394
solubility for Al (the Al-Fe system): 45.0 at.%
[1993Kat, 2007Ste]
solubility for Si (the Fe-Si system): ~19 at.%
[2017Cui]
(yFe) cF4 a=364.67 at 915°C [V-C2, Mas2]
1394 -912 Fm3m solubility for Al in the Al-Fe system: 1.35 at.%
Cu [1993Kat]
(Si) cF8 a=543.06 at 25°C [Mas2]
<1414 Fm3m
C (diamond)
FesAlg cl52 sometimes named y phase
1231 - 1095 143m Strukturbericht designation: D8,
CusZng a=897.57 + 0.02 at 1120°C and 59.4 at.% Al [2010Ste]
56.0 to 64.5 at.% Al [2016Li2]
FeAl, aP19 sometimes named { phase
<1146 P1 a=487.45 at 66.4 at.% Al [2010Chu]
FeAl, b=645.45
c=873.61
o = 87.930°
B =74.396°
y = 83.062° 64.7 to 66.7 at.% Al
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Phase/ Pearson Symbol/  Lattice Comments/References
Temperature Space Group/ Parameters
Range (°C) Prototype (pm)
Fe,Al;s 0C24 sometimes named m phase
1159 - ~331 Cmcem a=1765.59 = 0.08 at 71.5 at.% Al [1994Bur]
Fe,Als b=641.54 + 0.06
c=421.84 + 0.04
68.4 to 72.5 at.% Al
Fey Al mC102 referred to as FeAls in old literature before ~1995
<1150 C2/m sometimes named 0 phase
Fe, Al single crystal grown by Czochralski technique
a=1548.8 + 0.1 [2008Gil, 2010Pop]
b=2808.66 + 0.05
¢ =1247.69 + 0.08
B=(107.669+0.004)° 74.5 to 76.9 at.% Al
FeAlg 0(C28 metastable
Cmc2, a=744.0 85.7 at.% Al [1965Wal]
FeAlg b=646.4
c=877.9
Fe,Si hP6 a=4052+0.2 at 1062 + 10°C [1977Kud]
1212 - 1040 P63/mmc c=508.55 + 0.25
Fe,Si ~32.8-~33.8 at.% Si [1982Kub]
FesSi; hP16 a=674.16 + 0.06 [1943Wei]
1060 - 825 P63/mem ¢=470.79 + 0.06
Mn58i3
FeSi cP8 a=450.0 £ 0.5 at room temperature [1963Wat]
<1409 P23 ~49.0 to 51.8 at.% Si [1982Kub]
FeSi
FesSi; tP3 Also called Fe,Sis. High-temperature modification
1208 - 955 PA/mmm of FeSi,
FeSi, a=268.4 single crystal [1960Aro]
c=5128 ~69 to ~73 at.% Si [1982Kub]
FeSi, 0C48 a=987.75 + 0.03 [2009Yam]
<986 Cmca b="781.27 + 0.02
FeSi, c=782.73+ 0.02
Fe;(ALSH) cF16 sometimes named ;| phase
Fm3m Strukturbericht designation: D05
FezAl BiF; a=579.30 at 23.1 at.% Al, water-quenched from 250°C
<545 [1958Tay]
a=578.86 at 35.0 at.% Al, water-quenched from 250°C
[1958Tay]
~24 to ~34 at.% Al at 400°C [1993Kat]
Fe;Si a=1565.0 [1976Ber]
<1210 ~13.5 at.% at 600°C [20120hn]
~28.8 at.% at 1047°C [2017Cui]
Fe(ALSi) cP2 sometimes named o, phase
Pm3m Strukturbericht designation: B2
FeAl CsCl a=289.5310290.90 at36.2 to 50.0 at.% Al, water-quenched from
<1318 250°C [1958Tay]
23.5 to ~53 at.% Al [2007Ste]
FeSi’ - ~12 at.% at 700°C [20120hn]
<1285 ~26 at.% at 1210°C [2017Cui]
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Phase/ Pearson Symbol/  Lattice Comments/References
Temperature Space Group/ Parameters
Range (°C) Prototype (pm)
*Fe3Al,Si;, aPl16 Denoted as K; [1940Tak], D, E [1974Mur,
<1052 P1 1981Zar], ty, T9 [2002Gup, 2002Mai], T,
Fe;Al,Sis [2011Mar]
a=465.12 + 0.16 Single crystal [1996Yan]
b=632.61 +0.24
c=749.9 + 0.3
o =(101.375+0.023)°
B =(105.923+0.017)°
v =(101.237+0.019)°
a=469.3t0458.3 24.5-41.5 at.% Si [2011Mar] (as read from figure)
b=632.210633.4
c=748.4t0 752.4
o =(100.5to 101.6)°
B=(105.1to 106.5)°
vy =(101.7 to 100.2)°
21-45 at.% Al, 37.5-36.5 at.% Fe, 41.5-18.5 at.% Si
at 727°C [2004Bos]
*y-FeAl;Si, h* Denoted as K5 [1940Tak], K [1974Mur, 1981Zar],
<900-934 R3 T, [2002Gup, 2002Mai, 2011Mar], yFeAlSi
- [1967Mun, 1987Ste], yFe,Al5Si, or y [2004Ponl,
2004Pon2], A-AlFeSi [2004Sug]
a=1022.2+0.2 single crystal [2004Sug]
c=1966.7+0.2
a=1022.23+0.02 single crystal with average composition
c=1967.91+0.04 F620.4A165408i14i6 (at%) [201 1R0g2]
a=1018.52+0.02 powder sample with composition Fe,; 5Al5 4Sisg 4
c=1921.48+0.07 (at.%) [2011Rog2]
52.4-64.7 at.% Al, 21.5-20.1 at.% Fe,
26.1-15.2 at.% Si [2011Rog2]
*FeAl,Si 0C128 Denoted as K, of [1940Tak], G [1974Mur,
<940 Cmma 1981Zar], t5 [2001Kre, 2007Kre, 201 1Mar]
FeAl,Si
a=1799.5+0.2 single crystal taken from the Fe,5Al5(Siy5 (at.%)
b=1516.2+0.6 alloy [1989Ger2]
c=1522.1+0.1
a=799.57+0.01 to  51.8-54.5 at.% Al, 25.2-26.6 at.% Fe, 23-18.9 at.%
799.55+0.01 Si at 800°C [2011Mar]
b=1517.89+0.05 to
1520.67+0.01
¢ =1522.59+0.06 to
1523.78+0.01
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Phase/
Temperature
Range (°C)

Pearson Symbol/  Lattice
Space Group/ Parameters
Prototype (pm)

Comments/References

*FCA13 Slz
<875

1) *
Pbcn

a=606.1+0.1
c=952.5+0.1

Denoted as Fe,AlgSis by [1931Fus], FeAl,Si,
[1936Jae, 1988Zak], K4 by [1940Tak], t-FeAlSi by
[1950Phr], A by [1974Mur, 1981Zar], T4 by
[2001Kre, 2002Gup, 2002Mai, 2007Kre],
0-FeAl;Si, by [2004Pon1, 2004Pon2], & by
[1967Sun, 2019Bec]

Ordered superstructure measured from single
crystal FeAl, 5Si, 5 [1995Guel ]

If superstructure reflections are neglected, the
average structure can be refined in the tetragonal
14/mcm structure of PdGas firstly reported by
[1969Pan]

15.5-16.5 at.% Fe, 54-45.5 at.% Al, 30.5-39 at.% Si
[2007Kre]

*a-FeAlSi
<772

hP*
P6s/mmc

a=1234.6+0.2
c=2621.0:0.3

Average chemical formula Fe,Al; {Si [2011Rog1]
Denoted as c-FeAlSi by [1950Phr], M by
[1974Mur, 1981Zar], ay-FeAlSi by [1987Gri2], t5
by [1997Vyb, 2001Kre, 2002Gup, 2002Mai,
2007Kre 2014L1i, 2015Zho, 2015Zou, 2016Lil1],
a-Fe,Aly 4Si by [2004Pon1, 2004Pon2], Fe,AlgSi
by [2014Hao].

Single crystal Fe,Al; ;Si [2011Rogl1]

18-19.5 at.% Fe, 72-68 at.% Al, 10-12.5 at.% Si
[2007Kre]

*B-FGA14.5Si
<665

A2/a

a=616.1:0.3
b=617.5:0.3
¢=2081.3:0.6
B =(90.42+0.03)°

Denoted as K4 by [1940Tak], m-FeAlSi by
[1950Phr], B(FeAlsSi), B(FeAly 5Si), B-FeAl;Si by
[1967Sun, 1988Zak, 1994Rom, 1998Han,
2004Ponl, 2004Pon2, 2019Bec], L by [1974Mur,
1981Zar], B-FeAlSi [1987Ste, 2000Zhe], T4 by
[1997Vyb, 2001Kre, 2002Gup, 2002Mai,
2011Mar, 2014Li, 2015Zho, 2015Zou, 2016Li1].

Indexing of EBSD data was done with a tetragonal
structure mimicking the diffraction effects due to a
disordered stacking sequence [1994Rom]

Exhibits polytype structures. [2019Bec] formulated
structural models for these structures based on
ordering of the constituting double layers being
shifted by a/2 or b/2 displacements leading to 4
different double layer positions A, B, C, and D.

64.5-67.5 at.% Al, 16.5-15.5 at.% Fe, 17-19 at.% Si
[2007Kre]
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Phase/ Pearson Symbol/  Lattice Comments/References
Temperature Space Group/ Parameters
Range (°C) Prototype (pm)
*Fe,AlzSi; P2y/n Denoted as K5 by [1940Tak], B by [1974Mur,
<934 mP64 1981Zar], t; by [2001Kre, 2007Kre, 201 1Mar].
Fe,Al5Sis a=717.9+0.2 Small single crystals [1995Gue2]
b=18354+0.2
c=14455+0.4
B=1(93.8+0.2)°
a=71829+0.01to  41.3-46.6 at.% Al, 23.8-26.1 at.% Fe, 34.9-27.3
732.57+0.01 at.% Si at 800°C [2011Mar]
b=2835.69+0.03 to
827.92+0.01
c=1445.64+0.06 to
1460.96+0.03
B=1(93.81t093.71)°
24.0-26.0 at.% Fe, 41.0-46.5 at.% Al, 35.0-27.5
at.% Si [2011Mar]
*Fe3zAl,Siy 0C48 Denoted as C by [1974Mur, 1981Zar], tg by
<1010 Cmcm [2001Kre, 2007Kre, 201 1Mar]
Fe;Al,Siy a=366.87+0.15 Single crystals [1996Yan]

b=1238.5+0.7
c=1014.7£0.5

a=366.89:+0.01 to
365.99:0.04

b=1232.45+0.02 to
1247.29+0.05

c¢=1014.07+0.01 to
11015.68+0.02

23.2-28.6 at.% Al, 34.5-34.1 at.% Fe, 42.3-37.3
at.% Si at 800°C [2011Mar]

23.0-28.5 at.% Al, 33.5-34.5 at.% Fe, 42.5-37.5
at.% Si [201 1Mar]

* FCA12'4SiO‘6 (Tl) hP8

Ty by [2001Kre, 2002Gup, 2004Bos, 2007Kre]

P6s/mmc
NajAs a=406.0 [1991Ger]
c=773.8
24-25 at.% Fe, 59-57 at.% Al, 17-18 at.% Si at
727°C [2004Bos]
* Fey 7Al4S1 hP28 Denoted as F by [1974Mur, 1981Zar], t1;
997 - ? P6s/mmc [2004Bos, 2007Kre, 201 1Mar].
C02A15
a=750.9+0.3 Single crystal [1989Ger1]
¢=759.4+0.3
a=752.53+0.01to  62.3-64.7 at.% Al, 25.9-26.1 at.% Fe, 11.8-9.2 at.%
753.55+0.01 Si at 800°C [2011Mar]
b=756.05+0.02 to
758.05+0.02
26.0 at.% Fe, 62.5-65 at.% Al, 11.5-9.0 at.% Si
[2011Mar]
* Fe,Al;Si cF96 a=1080.6+0.2 Single crystal [2011Mar]
1005 - 720 Fd3m
NiTi,
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Table 3: Invariant Equilibria
Reaction T(°C) Type Phase  Composition (at.%)

Al Fe Si
L+Fe,Si = Ord + FeSi ~1192 U, L 4.7 64.9 30.4
L + FesAlg = Ord + Fe,Als 1120 U, L 62.6 335 3.9
Fe,Als + FesAlg = Ord + FeAl, 1095<T<1120 Uj - — — —
L 4+ Ord + FeSi = Fe;Al,Sis 1052 P, L 42.0 32.8 25.2
L + Ord = Fe3Al,Si; + Fey,Alg 1036 Uy L 50.2 30.2 19.6
L + Fe,Als = Fe5Al,Siz + FeyAly5 1028 Us L 52.0 29.0 19.0
L + Fe;Si; = Fe3Al,Siy 1010 ps,max L 21.9 32.8 454
L + FeSi = Fe;Siy + Fe;Al,Siy 1005 Ug L 213 34.8 429
Ord+ Fe,Als + FesAl,Si; = Fe, Al;Si 1005 P, - — — —
L + FeyAl;3 + Fe;Al,Siz = Fey 7A14Si 997 Py L 56.3 23.9 19.8
L + Fe;3Si; = Fe3Al,Siz + FesAl,Siy 989 U, L 242 33.9 42.0
L + Fe;Al,Si; + Feq 7A14S1 = FeAl,Si 940 Py L 51.0 23.0 26.0
L + Fe3Al,Si; + FeAl,Si = Fe,Al;Si; 934 Ps L 49.0 20.6 30.4
L + Fe3Al,Si; = Fe,Al3Siz + FesAl,Siy 928 Ug L 47.1 18.2 347
L + Fey 7A14S1i = FeAl,Si + Fey Al 5 914 Uy L 59.9 21.7 18.4
L + Fe,Al;Si5 + FeAl,Si = y-FeAl;Si 900< 7' <934 Pg L 63.9 13.8 22.3
L + FeAl,Si = y-FeAl3Si + FeyAl;3 900 Ujo L 65.9 15.1 18.9
L + Fe;Si; = Fe;Al,Siy + (Si) 885 Uy L 51.3 12.7 36.0
L + Fe3Al,Siy = Fe,Al3Siz + (Si) <885 Uy L 52.5 12.3 35.2
L + Fe,Al3Si;3 + (Si) = FeAl3Si, 875 Py L 57.0 10.5 32.5
L + Fe,Al;Si5 = FeAl;Si, + y-FeAl;Si 858 Uz L 66.1 10.9 23.0
L + y-FeAl3Si + Fe,Al 3 = a-FeAlSi 772 Pg L 81.8 6.5 11.7
Fe;Sis+Fe;Al,Siz=Fe;Al,Siy+FeSi 700< T <727 Uy - - - -
Fe;Sis+FeSi=Fe;Al,Siy+FeSi, 700< T <727 Ujs - - - -
Fe,Al;Si = Ord+ Fe,Als + Fe;Al,Si; 720 E; - - - -
Fe;Si; = Fe3Al,Siy + (Si) + FeSi, 600< T <700 E, - - - -
Fe,Al;Siz+FeAl,Si=Fe;Al,Siz+y-FeAl;Si 600< T'<700 Uie - - - -
L + y-FeAl3Si + FeAl;Si, = B-FeAly 5Si 665 Py L 83.9 1.8 14.3
L + y-FeAl3Si = a-FeAlSi + B-FeAl, sSi 648 Uy L 88.2 1.7 10.2
L + FeyAlj3 = a-FeAlSi + (Al) 636 Uig L 93.6 1.1 5.2
L + a-FeAlSi = B-FeAly sSi + (Al) 609 Ujg L 91.2 1.1 7.7
L + FeAl;Si, = B-FeAly sSi + (Si) 596 Usyp L 85.3 0.6 14.1
L = (Al) + (Si) + B-FeAly 5Si 577 E; L 87.7 0.3 12.0
Note: “Ord” denotes ordered (Fe,Al)Si or Fe3(Al,Si) phases

Most of the compositions of the liquid phase are as-read from the figure of [2007Kre].
The composition of the liquid phase for U, is accepted after [1988Ray]
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Table 4: Selected Data of Heat of Mixing of Liquid Alloys

Reaction Temperature AniH

0

(kJ-(g-at) )

Comments

xFe(l) + yAl(D) + 2Si() = Fe, ALSi(I) 1477

-29.4
-27.9
-28.9
-28.3
-17.3
-233
-17.2
-20.6
-19.3
-21.5
-14.9
-16.2

x=0.36,y=0.36,z=0.28
x=0.32,y=0.38,2=0.30
x=0.40,y=0.40,z=0.20
x=0.39,y=0.42,2=0.19
x=0.15,y=0.48,2z=0.37
x=0.25,y=0.50,z=0.25
x=0.154,y=0.538,z=0.308
x=0.22,y=0.58,2=10.20
x=0.20,y=0.60,z=0.20
x=0.25,y=0.60,z=0.15
x=0.15,y=0.70,z=0.15
x=0.18,y=0.72,z=0.10
High-temperature isoperibolic
calorimeter [2003Kan]

Table 5: Standard Heat of Formation of Ternary Intermetallics

Reaction T (K) AfH298'15 Comments
(J-(g-aty )

xFe(s) + yAl(s) + zSi(s) = Fe, AL Si(s) 298.15 -343+2 x=2,y=174,z=1 (a-FeAlSi)
245+ 2 x=2,y=9,z=2(B-FeAly 55i)

Isoperibolic high-temperature
solution calorimeter [1997Vyb]

xFe(s) + yAl(s) + zSi(s) = Fe, AL Si(s) 298.15

-35.731 + 1.381
-34.176 + 1.570
-36.704 + 1.860
—24.440 + 1.387
-30.384 + 1.869

x=0.39,y=0.42,z=0.19 (Fe3Al,Si3)
x=0.40,y =0.40,z=0.20 (Fe;Al,Si5)
x=0.36,y=0.36,z=0.28 (Fe3Al,Si3)
x=0.18,y=10.72,z=0.10 (¢-FeAlSi)
X = 025,)/ = 060, z=0.15 (F63A128i30)
Setaram microcalorimeter of the
Tian-Calvet type [2000Li1]

xFe(s) + yAl(s) + zSi(s) = Fe, AL Si(s) 298.15

—25.273 + 1.556
—28.392 £1.891
—20.475 + 1.208
-19.222 + 1.253
—29.634 + 0.929
—20.209 + 0.926
—35.845 + 1.760

x=0.20,y=0.60, z = 0.20 (y-FeAl;Si)
x=0.22,y=0.58,z=0.20 (y-FeAl3Si)
x=0.154,y=0.538,z=0.308 (FeAl5Si,)
x=0.15,y=0.48,z=0.37 (FeAl5Si,)
x=0.25,y=0.50,z=0.25 (FeAl,Si)
x=0.15,y=0.70,z=0.15 (B-FeAl, 5Si)
x=0.32,y=0.38,z=0.30 (Fe3Al,Siy)
Setaram microcalorimeter of the
Tian-Calvet type [2000Li2]

Table 6: Investigations of the Al-Fe-Si Materials Properties

Reference Method/Experimental Technique Type of Property

[1968Arul], Resistivity measurements Electrical resistivity

[1968Aru2],

[1970Aru]

[1968Lih] Magnetometry Curie temperature

[1977Nic2] Magnetometry Saturation magnetization

[1983Sch] Magnetometry Saturation magnetization
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Reference Method/Experimental Technique Type of Property
[1986Tak], Magnetometry Magnetostriction, magnetocrystalline anisotropy
[1987Takl],
[1987Tak2]
[1988Dor] Magnetometry Magnetic permeability
[1993Sch] Mechanical tests Critical resolved shear stress up to 720°C
[1996Fri] Electrical tests Metal/insulator transition
[1996Szy] Magnetometry Magnetic susceptibility
[1998Dit] Electrical and magnetic Electrical conductivity, Hall effect,
magneto-resistance, magnetic susceptibility
[19990ht] Electrical tests Thermoelectric power
[2000Bha] Electrochemical tests Corrosion
[2001Cho] Mechanical tests Hardness, strength, and elongation up to 520°C
[2003Cie] Mechanical tests Dynamic strain aging
[2003Mur] Mechanical tests Hardness and indentation fracture toughness
[2010Fri] First-principles calculation of elastic Youngs modulus
properties
[2010Leg] Magssbauer spectroscopy Magnetic property
[2012Leg] Mossbauer spectroscopy, X-ray diffraction, Magnetic and structural properties
magnetic measurement
[2015Che] Thermal and electrical tests Thermal and electrical conductivity
[2017Raj] Van der Pauw four probe method, laser flash Electrical resistivity, thermal diffusivity

technique

Table 7: Coordinates of the y/(a+y) and (a+7y)/o Phase Boundaries in the Al-Fe-Si System. y and o denote (yFe) and

(aOFe)

Composition (mass%) Temperature (°C) of the

Al Si y/(e+y) boundary (o + v)/ee boundary
0.16 0.25 905 1385

0.19 0.58 952 1351

0.31 0.93 1014 1300

0.44 0.19 935 1350

0.44 0.53 976 1326

0.48 0.13 948 1347

0.64 0.23 1030 1275

0.71 0.65 1048 1270

0.74 0.24 1000 1303
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data curves & grid: at.%
axes scaling: at.%

Fig. 6: Al-Fe-Si.
Liquidus surface
projection

data curves & grid: at.%

axes scaling: at.%
Fig. 7:  Al-Fe-Si.
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1100°C

Order-disorder
transition

Fe 20 40FeAl  FegAly 60 FeAl, F62A15\80F64A113 Al

MSIT® Ternary Alloys. Volume 21
Selected Al-Fe—X Ternary Systems for Industrial Applications



Al-Fe-Si 425

Si

data curves & grid: at.%
(Si) axes scaling: at.%

Fig. 8: Al-Fe-Si.
Isothermal section at ) )
1020°C L+(Si)+Fe,Si,

FeSi'

Order-disorder
transition

(YFe)
Fe 20 FeAl 40 6OFeA12 Fe,Al, 80 Fe Al Al

Si

data curves & grid: at.%

1, = Fe,ALSi, (si Tg =Y-FeAl;Si  axes scaling: at.%

Fig.9: Al-Fe-Si. T, = Fe,ALSi, T, = Fe,ALSi
Isothermal section at T, =Fe,ALSi, Tg = Fe, ,ALSI
900°C T, =FeALSi
20
FeSi, +(Si)+Fe,Si, 80(5)

FeSit+t, +Fe,Si,

FeSi
Fe,Si +(Fe,Al)Si+FeSi

\
Fe 20 40FCAl 60 FeAl, Fe,Aly. 80FAls Al
FeAl,+(Fe,Al)Si+Fe,Al, T,tFe,Al+Fe Al ,
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Al-Fe-Si

Fig. 10: Al-Fe-Si.

Isothermal section at 7, = Fe,Al,Si,

800°C

Fig. 11: Al-Fe-Si.

Isothermal section at T, = Fe,Al,Si,

727°C
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Al-Fe-Si
Fe 60.00
g: 4888 data curves & grid: at.%
axes scaling: at.%

Fig. 12: Al-Fe-Si.
Partial isothermal
section at 700°C

Fe,Si
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Fe,(ALSi)+Fe(ALSi)

FeSi'
Fe,(ALSi)

Order-disorder
transition

Fe 20 FeAl Fe 60.00
Al 40.00
Si 0.00
Fe 60.00
g: 4888 data curves & grid: at.%
axes scaling: at.%
Fig. 13: Al-Fe-Si.
Phase equilibria in the
Fe corner at 650°C
Fe,Si
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’ : transition
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g: 2888 data curves & grid: at.%
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Fig. 14: Al-Fe-Si.

Phase equilibria in the
Al corner at 650°C
L+B-FeAl, Si+y-FeAl,Si
L+o.-FeAlSi+y-FeAl,Si B
N
Y
B ~
> Al
L+(Al)+Fe,Al,, @D
Fe 20.00 90 Al
Al 80.00
Si 0.00
Fe 0.00
g: 2888 data curves & grid: at.%

axes scaling: at.%
Fig. 15: Al-Fe-Si.
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Al 4500
Si  55.00 data curves & grid: at.%
axes scaling: at.%
Fig. 16: Al-Fe-Si.
Partial isothermal
section at 620°C
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Al  45.00 L+(Al)+o-FeAlSi
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Fe. ALSi Si FeALSi data curves & grid: at.%
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Fig. 18: Al-Fe-Si. 1, = Fe, ALSi,
Isothermal section at Ty = FeAl,Si
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axes scaling: at.%
Fig. 19: Al-Fe-Si.
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Fig. 22: Al-Fe-Si. 1
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Fig. 23: Al-Fe-Si. 7
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Fig. 24: Al-Fe-Si.
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Al-Fe-Si

Fig. 26: Al-Fe-Si.
Isopleth at 27 at.% Fe

Temperature, °C

Fig. 27a: Al-Fe-Si.
Isopleth at 35 at.% Fe

Temperature, °C
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Al-Fe-Si

Fig. 29: Al-Fe-Si.
Isopleth at 50 at.% Fe

Temperature, °C

Fig. 30: Al-Fe-Si.
Integral enthalpy of
mixing of liquid
alloys at 1477°C, in
kJ/mol of atoms
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