
Міністерство освіти і науки України
Донбаська державна машинобудівна академія (ДДМА)

О. Ю. Мельников

ПРОГРАМУВАННЯ
ТА АЛГОРИТМІЧНІ МОВИ

Навчальний посібник

для здобувачів вищої освіти за спеціальностями
«Системний аналіз та наука про дані» та «Інформаційні системи і тех-

нології»

Видання 2-е, зі змінами

Затверджено
на засіданні вченої ради
Протокол № 9 від 24.04.2025

Краматорськ
ДДМА
2025

 2

УДК 004.021+004.43
М 48

Рецензенти:

Манзюк Е. А., д-р техн. наук, професор, Хмельницький національний
університет;

Шевченко І. В., канд. техн. наук, доцент, Національний аерокосміч-
ний університет «Харківський авіаційний інститут».

Мельников О. Ю.

М 48 Програмування та алгоритмічні мови : навчальний посібник [для
здобувачів вищої освіти за спеціальностями «Системний аналіз
та наука про дані» та «Інформаційні системи і технології»] /
О. Ю. Мельников. – Краматорськ : ДДМА, 2025. – 240 с.

ISBN 978-617-7893-01-0

Містить основні теоретичні відомості; рекомендації до виконання й вимоги
до оформлення робіт з дисципліни «Програмування й алгоритмічні мови»; мате-
ріали про роботу з мовами програмування: Паскаль (Free Паскаль, ABC-
Паскаль), Сi (Турбо Сi, Dev C++), Object-Pascal (середовище Lazarus), – а також
основи об'єктно-орієнтованого програмування з прикладами на C++. Пропону-
ється як методичні матеріали для виконання лабораторних і самостійних робіт,
а також як посібник для самостійного вивчення й підготовки до складання заліку
та іспиту.

УДК 004.021+004.43

ISBN 978-617-7893-01-0

© О. Ю. Мельников, 2025
© ДДМА, 2025

 3

ЗМІСТ

Введення………………………………………………………………… 5
1 Основи програмування мовою Паскаль…………………….............. 6

1.1 Основні відомості про мову програмування Паскаль.......... 6
Лабораторна робота 1. Лінійний обчислювальний процес…… 14
1.2 Різновиди обчислювальних процесів ……………………… 16
Лабораторна робота 2. Обчислювальний циклічний процес,

що розгалужується……………………………………………………...

19
1.3 Нестандартні й обмежені типи даних, множини, оператор

вибору варіанта …………………………………………………………

24
Лабораторна робота 3. Інші типи даних і вибір варіанта…….. 27
1.4 Складні типи даних – масиви 29
Лабораторна робота 4. Обробка одномірних масивів………… 32
1.5 Підпрограми………………………………………………..... 36
Лабораторна робота 5. Обробка різних масивів

з використанням підпрограм…...……………..

39
1.6 Оброблення символьних і рядкових даних………………... 41
Лабораторна робота 6. Оброблення рядків символів…………. 43
1.7 Тип запис, файли й файлові типи даних……………............ 45
Лабораторна робота 7. Робота із простими файлами…………. 50
1.8 Модулі………………………………………………………... 52
Лабораторна робота 8. Побудова графічних зображень……… 55
1.9 Базові положення ООП й їхнє використання в Паскалі…... 58
Лабораторна робота 9. Переміщення графічних об'єктів…….. 60
1.10 Завдання для самостійної роботи…………………………. 63

2 Основи програмування мовою Сі…………………………………… 77
2.1 Основні відомості про мову програмування Сі.................... 77
Лабораторна робота 1. Лінійний обчислювальний процес…… 78
2.2 Різновиди обчислювальних процесів………………............ 80
Лабораторна робота 2. Обчислювальний циклічний процес,

що розгалужується……………………………………………………...

82
2.3 Покажчики, функції, масиви……………………………….. 86

Лабораторна робота 3. Оброблення масивів з використанням
функцій…………………………………………………………………..

90

2.4. Оброблення символьних даних……………………………. 93
Лабораторна робота 4. Оброблення символьних даних……..... 96
2.5 Складні типи даних………………………………………….. 98
Лабораторна робота 5. Робота з файлами…………………….... 104
2.6 Робота препроцесора й виняткові ситуації………………... 106
2.7 Завдання для самостійної роботи…………………………... 108

3 Основи програмування мовою Object Pascal……………….............. 111
3.1 Середовище візуального програмування Lazarus…………. 111
3.2 Програмування в середовищі Lazarus……………………… 118

 4

3.3 Робота з базами даних у середовищі Lazarus……………… 140
Лабораторна робота 1. Компоненти середовища візуального

програмування Lazarus……………………………………………........

158
Лабораторна робота 2. Розробка простого додатка

для Windows за допомогою засобу розроблення Lazarus…………….

163
Лабораторна робота 3. Побудова графіків функцій

у середовищі Lazarus……………………………………………………

177
Лабораторна робота 4. Робота з базами даних у середовищі

Lazarus…………………………………………………………………...

185
Самостійна робота. Створення пакета для оброблення даних

у середовищі Lazarus…………………………………………………...

193
4 Основні поняття об'єктно-оріентованого підходу
й об'єктно-орієнтоване програмування на мовах C++ та Java……….

196

4.1 Основні поняття об'єктно-орієнтованого підходу………… 196
4.2 Клас як абстрактний тип даних……………………….......... 204
4.3 Спадкування й інші можливості класів……………............. 211
4.4 Основи мови програмування Java……………............…….. 216
Лабораторна робота 1. Класи та об'єкти……………………...... 218
Лабораторна робота 2. Програмування мовою Сі…………….. 219
Лабораторна робота 3. Робота з функціями………………….... 228
Лабораторна робота 4. Пересування графічних об'єктів

на С++……………………………………………………………………

230
Лабораторна робота 5. Побудова діаграми класів…….............. 234
Лабораторна робота 6. Програмування мовою Java…………... 236

Література………………………………………………………....…..... 238

 5

ВВЕДЕННЯ

Цій навчальний посібник містить матеріали щодо основи робіт з мо-
вами програмування Паскаль і Сі з прикладами в реалізаціях Free Паскаль,
ABC Паскаль, Object Pascal (середовище візуального програмування
Lazarus), Турбо Сі й Турбо С++ (Dev-C++).

Передбачається, що з основами інформатики здобувачі були ознайо-
млені в процесі одержання середньої освіти, тому поняття різновидів обчи-
слювальних процесів докладно не розглядаються. Також відсутні докладні
інструкції побудови блок-схем алгоритмів.

Структурно посібник складається із чотирьох розділів, що відпові-
дають змістовним модулям однойменної дисципліни ОПП «Системний
аналіз» та ОПП «Інформаційні системи та технології»:

1. Основи програмування мовою Паскаль.
2. Основи програмування мовою Сі.
3. Основи візуального програмування.
4. Основи об'єктно-оріентованого програмування.
Останній розділ як обов'язковий компонент містить введення в об'єк-

тну модель за відомим підручником Граді Буча (Grady Booch).
Кожен розділ містить блок основних теоретичних відомостей, кілька

лабораторних робіт (від 4 до 9) і завдання для самостійної роботи. Перед-
бачається, що лабораторні роботи здобувач повинен виконувати в аудито-
рний час, під керівництвом викладача, а завдання, винесені на самостійну
роботу, – у позааудиторний. Кожна лабораторна робота супроводжується
одним або декількома докладними прикладами написання програм з ко-
ментарями.

Звіт за завданням повинен містити:
– текст завдання;
– текст програми;
– результати роботи програми.
Здобувачі вищої освіти заочної форми навчання можуть використати

цей посібник як методичні матеріали для самостійної роботи при підготов-
ці до заліково-екзаменаційній сесії (точний перелік завдань, призначених
саме для заочної форми навчання, визначається викладачем).

Хоча посібник призначений для здобувачів вищої освіти за спеціаль-
ностями «Системний аналіз» та «Інформаційні системи та технології», він
може виявитися корисним і для інших спеціальностей.

 6

1 ОСНОВИ ПРОГРАМУВАННЯ МОВОЮ ПАСКАЛЬ

1.1 Основні відомості про мову програмування Паскаль

Відповідно до одного з визначень, алгоритм – це перелік де-

талізованих інструкцій, що однозначно описують процес перетворення ви-
хідних даних на результат розв'язання задачі.

Для опису алгоритму можуть використатися різні способи:
– вербальний (словесний запис: «якщо умова виконана, то перейти

до кроку 5, інакше повернутися до кроку 2...»);
– графічний (блок-схеми);
– псевдокод (формальні алгоритмічні мови).
Як правило, сучасні програми створюються на так званих мовах про-

грамування високого рівня, більшість яких розроблені на основі одного
із чотирьох базових мов: Фортрану, Бейсика, Паскаля й Сі.

У першому модулі розглянемо основи мови програмування Паскаль,
створеного швейцарським математиком Нікласом Віртом у 70-х роках XX
століття. Паскаль створювався як універсальна мова програмування, при-
датний і для вивчення здобувачами основ програмування, і для розроблен-
ня складних прикладних програм.

Розвиток комп'ютерної техніки й вихід на ринок нових операційних
систем викликало появу низки модифікованих версій Паскаля: Turbo-
Pascal, Borland-Pascal, ABC-Pascal, Free-Pascal і багатьох інших. Часто ви-
бір програмістом середовища розробки визначається не особливостями ре-
алізації мови програмування, а умовами використання цього середовища
(необхідність наявності ліцензії). Оскільки всі транслятори мов із префік-
сом «Турбо» та «Free» офіційно можна використати для навчальних цілей
безоплатно, наведені в цьому посібнику приклади програм перевірялися
саме на цих версіях Паскаля, що не забороняє здобувачеві використати
будь-яку іншу версію мови відповідно до власних можливостей і під осо-
бисту відповідальність.

Алфавіт мови Паскаль містить:
– латинські літери (великі й малі при цьому не відрізняються);
– арабські цифри;
– розділові знаки: крапка (.), крапка з комою (;), двокрапка (:), кома

(,), апостроф (');
– знаки арифметичних операцій: плюс (+), мінус (-), множення (*),

ділення (/);
– знаки операцій відносини: більше (>), менше (<), дорівнює (=);
– дужки: (), { }, [];
– пробіл.

 7

У тексті, взятому в лапки, а також у коментарях можна використати
будь-які символи, наявні на клавіатурі комп'ютера.

Коментар – це взята в особливі дужки будь-яка послідовність сим-
волів, крім дужки, що закриває. Можна використати {фігурні дужки} або
(*комбінацію круглої дужки й зірочки*).

Усі дані в програмі можуть бути або константами, або змінними.
Значення констант визначаються перед виконанням програми й не можуть
змінюватися під час її виконання; значення змінних можуть бути змінені
скільки завгодно раз. У Турбо Паскалі було додане поняття типізованої
константи, однак це, по суті, та сама змінна із присвоєнням початкового
значення до початку виконання програми.

Дані – як константи, так і змінні – завжди мають бути віднесені
до якого-небудь типу. Під типом даного розуміється перелік його припус-
тимих значень; тип також визначає перелік припустимих дій.

У Паскалі існує кілька груп типів, які можна поділити, з одного боку,
на прості й структуровані, а з іншого боку – на стандартні (визначені)
і створені програмістом. Усі нові типи даних обов'язково повинні бути ви-
значені або в розділі опису типів, або в розділі опису змінних.

У таблиці 1.1 наведені базові й часто використовувані типи
даних.

Таблиця 1.1 – Базові й часто використовувані типи даних

Тип Ім'я типу Зміст

ShortInt Цілі числа в діапазоні –128…127

Byte Цілі числа в діапазоні 0…255

Integer Цілі числа в діапазоні –32768…32767

Word Цілі числа в діапазоні 0…65535

Цілий

LongInt Цілі числа в діапазоні ± 2 млрд
Дійсний

(речовин-
ний)

Real Речовинні числа в діапазоні 3810±±

Логічний Boolean
Логічні дані: можуть набувати значень
TRUE (істина) або FALSE (неправда)

Символьний Char
Можуть набувати значення однієї літери
з набору символів комп'ютера

Перелічний
Набір значень, яких може набувати дане
значення

Діапазон
Підмножина впорядкованих значень,
обумовлена мінімальним і максимальним
значеннями

 8

Ім'я будь-якого елемента програми (змінної, константи, типу даних,
мітки) називається ідентифікатором. Ідентифікатор може включати літе-
ри, цифри й символ підкреслення (пробіли неприпустимі), при цьому по-
чинатися повинен тільки з літери. Великі й малі літери в ідентифікаторі
не відрізняються (NAME й name – це одне ім'я). Довжина ідентифікатора
теоретично може бути будь-якою, але транслятором приймаються не всі
символи (наприклад, у Турбо Паскалі істотними є тільки перші 63 символи).

Розглянемо правила опису міток, констант, типів даних і змінних.
Мітка – ціле число без знака (у ранніх версіях Паскаля) або звичай-

ний ідентифікатор, від оператора відокремлюється двокрапкою. Викорис-
тається для визначення оператора, на який здійснюється перехід. Усі вико-
ристовувані в програмі мітки повинні бути визначені у відповідному роз-
ділі опису:

Label <Ім'я мітки>;

Наприклад:

Label 1;
Label Abc;

Для переходу на мітку використовується оператор безумовного пе-

реходу Goto, наприклад:

Goto Abc;

Часте використання міток у програмі показує невисокий рівень здат-

ностей програміста: правильно написана програма, як правило, не містить
жодної мітки.

Опис констант має вигляд

Const <Ім'я константи> = Значення;

Тип константи однозначно визначається її значенням та явно не опи-

сується. Ім'я константи – звичайний ідентифікатор. Наприклад:

Const a=1.92; c='S'; k=7;

Тут описані два числа (речовинне й ціле) і один символ.
За замовчуванням у всіх версіях Паскаля визначені спеціальні конс-

танти:
Рi=3.14159265...
Maxint – найбільше ціле число, яке дорівнює 32767.

 9

У більш новітніх версіях Паскаля це вже не константи, а особливі
функції, однак це не впливає на принципи їхнього використання.

Опис типів має вигляд:

Type <Ім'я типу> = Зміст;

Приклади опису нових типів («створених програмістом») будуть на-

ведені в третьому підрозділі.
Опис змінних починається із ключового слова Var, після

якого перелічуються змінні і їхні типи. Загальний вид:

Var <Ім'я змінної> : <тип змінної>;

Якщо описується декілька змінних одного типу, їх можна

перелічити через кому:

Var k: integer; x, y: real; c: char;

Структурно програма мовою Pascal складається із заголовка, розділу

описів, розділу операторів і закінчується крапкою. Заголовок – це службо-
ве слово Program й ім'я програми (через пробіл). Розділ операторів містить
у собі послідовність операторів, відокремлених крапкою з комою (;) і об-
межених операторними дужками – службовими словами Begin й End. Усі
описи й оператори (дії) у Паскалі обов'язково відокремлюються один від
одного крапкою з комою (;).

Program <ім'я>;
Label <мітка>,...,<мітка>;
Const <ім'я константи> = <константа>;
Type <ім'я типу> = <тип>;
Var <ім'я змінної>,...,<ім'я змінної> : <тип>;
Procedure <заголовок процедури>;

<тіло процедури>;
Function <заголовок функції>;

<тіло функції>;
Begin

<оператор>;
<оператор>

End.

Обов'язковим є тільки розділ операторів. Узагалі, всі інші елементи
програми можуть бути відсутніми. З формального погляду наведений ниж-
че приклад не містить помилок:

Begin End.

 10

Практично у всіх версіях Паскаля порядок розміщення розділів опи-
сів довільний, єдине правило, яке необхідно дотримати: можна використа-
ти лише ті ідентифікатори, які вже були визначені раніше.

Розглянемо поняття виразу. Розрізняють вирази: арифметичні,
строкові й відносини.

Арифметичні вирази визначають послідовність обчислення значен-
ня. Можуть містити в собі константи, змінні, стандартні функції, які відо-
кремлюються дужками й знаками операцій.

Знаки арифметичних операцій: «+» (додавання), «–» (віднімання),
«*» (множення), «/» (ділення), DIV (ділення на ціле), MOD (визначення за-
лишку від ділення).

Дії виконуються ліворуч-праворуч із дотриманням такого старшинства:
а) вирази в дужках;
б) мультиплікативні операції (* , / , DIV , MOD);
в) адитивні операції (+ , -).
Тип результату виразу залежить від типів операндів, що беруть

участь в операції. Тип результату додавання, віднімання й множення є
Integer, якщо обидва операнди мають тип Integer, і Real в іншому випад-
ку. Результатом операції ділення завжди є тип Real, а результат операцій
Mod й Div завжди має цілий тип, тому що аргументи можуть бути тільки
цілі.

Вираз відносин припускають відносини між двома числовими або
строковими значеннями: «=» (дорівнює), «< >» (не дорівнює), «<» (менше),
«>» (більше), «<= » (менше або дорівнює), «>=» (більше або дорівнює).

Логічні операції: NOT – заперечення, AND – множення (логічне І),
OR – додавання (логічне АБО).

Приклад: А = В, (А > 0) AND (В > 0).
Вираз (як і будь-яка послідовність операторів) може бути записаний

як в один рядок, так і на декількох рядках.
Оператори – це опис яких-небудь дій над даними (змінними, конс-

тантами). Оператори відокремлюються один від одного крапкою з комою.
В одному рядку програми можна записати декілька операторів, і навпаки:
один оператор може розміщатися на декількох рядках.

Складний оператор – це сукупність послідовно виконуваних опера-
торів, укладених в операторні дужки Begin й End. Усередині операторних
дужок оператори також відокремлюються один від одного крапкою з ко-
мою. Begin й End – це не оператори, тому після begin і перед end крапки
з комами, як правило, не ставляться. Складний оператор може знадобитися
в тих випадках, коли відповідно до правил побудови конструкцій мови
припустиме використання тільки одного оператора, а потрібно виконати
низку операторів. Таким єдиним оператором може бути складний опера-
тор, до якого входить низка операторів, що виконують необхідні дії.

 11

Оператор присвоювання служить для обчислення значення виразу
й присвоювання його змінної. Формат оператора:

<ім'я змінної> := <вираз>;
Спочатку обчислюється значення виразу, записаного праворуч, а по-

тім змінній привласнюється це значення. Ім'я змінної й результат повинні
належати одному типу. Виключення може становити випадок, коли тип ре-
зультату більше широкий, чим тип виразу (наприклад, вираз цілого типу,
а результат – дійсного типу).

У процесі вирішення завдань часто виникає необхідність в обчис-
ленні елементарних функцій. Для звертання до функції необхідно у виразі
записати ідентифікатор функції й у круглих дужках – аргумент. Аргумен-
тами можуть бути константи, змінні, вирази або інші функції. Для триго-
нометричних функцій кут треба задавати тільки в радіанах. Розрізняють
стандартні арифметичні функції (табл. 1.2) і стандартні функції перетво-
рення (табл. 1.3).

Таблиця 1.2 – Стандартні функції

Функція Математичний запис Запис в Pascal
Синус Sin x Sin (X)
Косинус Cos x Cos (X)
Арктангенс Arctg x Arctan (X)

Абсолютне значення x Abs (X)

Корінь квадратний x Sqrt (X)

Квадратування x
2 Sqr (X)

Обчислення експоненти e
x
 Exp (X)

Натуральний логарифм Ln x Ln (X)
Присвоєння знака – Sgn (X)

Оскільки в Паскалі всього три тригонометричні функції, інші необ-

хідно розраховувати за відомими формулами, наприклад: тангенс – це си-
нус, поділений на косинус:

);/cos(/)/sin(yxyx
y

x →t
g

Для піднесення змінної до деякого степеня використовується відо-

мий з математики вираз xaa ex ln= . Мовою Паскаль піднесення числа X
до степеня A запишеться так:

exp(a * ln(x));

 12

Логарифм числа за заданою основою також розраховується з вико-
ристанням відомої формули

a

b
ba ln

ln
log = .

Таблиця 1.3 – Стандартні функції перетворення й визначення

Trunc (x) Обчислює цілу частину аргументу Х
Round (x) Визначає округлене значення Х
Ord (x) Визначає порядковий номер аргументу Х у впорядкова-

ному списку значень, обумовлений типом Х
Chr (x) Визначає символ, порядковий номер якого дорівнює ар-

гументу Х
Succ (x) Видає значення, що розташоване за аргументом Х у спи-

ску значень, обумовленому для типу Х
Pred (x) Видає значення, що передує аргументу Х у списку зна-

чень, обумовленому для типу Х

Функції ord / chr будуть корисні при роботі із символьними даними,

а функції succ / pred – як із символьними даними, так і з даними переліче-
них типів.

Уведення даних до програми здійснюється за допомогою процедур:

Read(b1, b2,..., bn);
Readln(b1, b2,... , bn);
Readln;

де b1,b2,..., bn – імена змінних, значення яких уводяться.
Процедура Read просто здійснює уведення даних, Readln здійснює

уведення й забезпечує перехід до початку нового рядка (має сенс при ро-
боті з масивами символів – рядками). Дані вводяться послідовно в одному
рядку й відокремлюються один від одного пробілами.

Readln забезпечує пропуск одного рядка й перехід до початку ново-
го рядка. Але фактично це процедура затримки роботи програми до натис-
кання користувачем клавіші Enter.

Для виводу даних на екран використовуються процедури:

Write (b1, b2,..., bn);
Writeln (b1, b2,..., bn);
Writeln;

де bl,b2,...,bn – вираз, значення якого виводяться (це можуть бути змінні
або константи).

 13

Write виконує вивід значень, розміщаючи виведені значення в одно-
му рядку, Writeln виконує вивід значень і після виводу останнього значен-
ня здійснює перехід до нового рядка. Writeln без параметрів забезпечує
пропуск рядка й перехід до початку нового рядка – це часто буває корисно
при роботі з масивами.

Значення виразів у списку виводу можуть бути різних типів. Загаль-
ний вид запису виводу значень цілого типу:

Write (b: m);

а для виводу дійсного типу:

Write (b: m: n);

де b – арифметичний вираз;
m – поле, що відводить під значення;
n – частина поля, що відводить під дробову частину числа.

Наприклад:

Writeln (k:4, a:6:2, b:0:2);

У першому випадку виводиться ціла змінна на 4 позиції, у другому

й третьому – речовинні змінні з 2 позиціями після коми, однак змінна a ви-
водиться максимум на 6 позиціях, а кількість позицій змінної b розрахову-
ється програмою. «Зайві» позиції заповнюються пробілами перед числом,
праворуч – нулями. Якщо k = 2, a = 2.35, b = 1.1, то результат попереднього
прикладу набуде вигляду

__ __ __ 2
__ __ 2 . 3 5
1 . 1 0

Узагалі, числа із дробовою частиною записуються у двох формах:

основний і логарифмічній (з порядком). Замість коми ставиться десяткова
крапка. Замість основи степеня 10 ставиться літера E, що дозволяє відо-
кремити мантису від показника степеня й записати всі символи числа в од-
ному рядку. Незначний нуль перед десятковою крапкою може бути відки-
нутий. Приклади:

212.356
2.12356E+02

 14

Лабораторна робота 1. Лінійний обчислювальний процес

Завдання. Скласти програму для обчислення функцій: b = f(x,y,z), де

z = w(x,y) при постійних значеннях х і в. Варіанти завдань у вигляді зна-
чень х, у і функцій f й w задані в таблиці 1.4.

Таблиця 1.4

Вар.),,(zyxf),(yxw x y

1 2 3 4 5

0 ze)xsin(⋅ ycosxsn + -π π

1)y3zctg(e x3 +− yxcos2 + –3.22 0.15

2
z

3

xz

y3cosx

+
+

 ysinx

xy2

− 3.27 –1.84

3 2)zx(

)xy/()zy(

+
++

xtgy

yx2

+
+⋅

 –1.32 9.35

4 zyxxy ⋅++ 23 yx

x5

+ 0.75 –2.55

5 ()zyxlg ++ 2y5

xcos
 –5.24 3.35

6
yctgx

xtgy
z + ycosx + 0.32 –5.75

7 22 yx

z

+ yx

ycosxsin

+
+

 –2.54 3.16

8
xe

yxln

z +
+ ycosxsin

x2
22 +

 1.28 –2.82

9
yctg

xtg
zsin +

xlgy

ylgx

+
+

 –0.72 3.29

10
ycos

xlg
zln + y5.0x2 + 11.42 –2.76

11 xtg
yx

z 2
3

+
+

ylnxln

ey

+
 –5.43 1.87

12
xarctg

e
zsin

yx+
+ ycos

y

xsin

x + 3.57 –0.32

13 xsinz y/x + ()xey6x5cos ++ –1.42 12.1

14 zsin
yxlnx2

ex

+
++ ycosxsin 22 + 1.34 –0.65

 15

Продовження таблиці 1.4

1 2 3 4 5

15 zarctgyx ++ yxln

yx

+
+

 –3.12 1.78

16 ztg
z

x5y4 23

++
 ()yxtg

xx

+
+

 0.72 –3.47

17
zln

exxy y⋅+

yx

ee yx

+
+

 –2.65 5.32

18 zyxlnxsinz ++++
xlg

yxx2 3 ++
 0.32 –1.32

19 ()yxtg

yzx
2

32

+
++

 ()yxsin

yxx 2

+

++
 –4.54 0.45

20 ytgxtgztg ++
yxln

yx

+
+

 2.52 –8.12

21
()

yxz

yxsin

++
+

3

2

yx

yx

+

−
 –0.73 3.28

22
3 zy

zxln

+

+
 ()yxcose yx +++ 1.76 –0.75

23
zxln

zyx3

+

++

()
()yxctg

yxtg

−
+

 –0.62 2.45

24 ztgyxlgzlg +++ ytgxsin + 2.65 –4.36

25
zcose

zsine
yx

yx

+
+

−

+

()
()yxtg

yxtg

−
+

 –0.9 1.2

26 xsinez ycosxsin + π –π

27 xsinzln ⋅ ycosxsin 22 + –π π

Приклад виконання завдання

Скласти програму для обчислення функції

()1ytg2z yx += +
,

де y = 1sin +x .

Вихідні дані: x = 2.3.

 16

Program lab1;
Const x = 2.3 ;
Var y,z: real ;
Begin

y := sqrt(sin(x)+ 1);
z := exp(abs(x-y)*ln(2))*(sin(x)/cos(x)+ 1);
Writeln(' При x = ' ,x: 3: 1, ' y =' ,y: 6: 2, ' z =' ,z: 6: 2)

End.

1.2 Різновиди обчислювальних процесів

У прикладі попереднього підрозділу був наведений найпростіший

вид алгоритму – лінійний обчислювальний процес. У такому алгоритмі да-
ні або вводяться з клавіатури на початку програми, або задаються у вигляді
констант, потім відбуваються певні розрахунки, і наприкінці – виведення
результатів на екран.

Реально такі процеси майже не зустрічаються. Дуже часто викорис-
таються циклічні обчислювальні процеси й процеси, що розгалужуються.
Розглянемо їх по черзі.

Початок

X = 2.3

Y= 1sin +x

()1ytg2z yx += +

Кінець

Виведення x,y,z

 17

Розгалуження в програмі виникають, якщо необхідно вибрати один
з декількох можливих шляхів у вирішенні завдання. Оператор умовного
переходу дозволяє змінити порядок виконання операторів у програмі за-
лежно від певних умов. Загальний вид оператора умовного переходу:

If <умова> then <оператор1> else <оператор 2>;

Якщо умова, задана в операторі If , істинна, то виконується then-

гілка, тобто оператор (простий або складовий), що розташований після
then (<оператор 1>), інакше виконується else-гілка, тобто оператор, що
розташований після else (<оператор 2>). Після виконання однієї з гілок ро-
бота програми продовжується з оператора, що розташований за If .

Усічений формат оператора умовного переходу:

If <умова> then <оператор>;

Оскільки «If-then-else» – це єдиний оператор, усередині нього (тобто

перед else) крапки з комою не ставляться.
Усередині оператора умови можуть бути розташовані інші оператори

умови. Формально в деяких трансляторах задається межа вкладеності
умов, але реально цієї межі не досягти.

Циклічним називається обчислювальний процес, що містить багато-
разові обчислення за тими самими залежностями (як правило, математич-
ними), але для різних значень вхідних у нього змінних. Паскаль – одна
з небагатьох мов програмування, у якої існує три види циклів, і єдина мо-
ва, де всі ці види задаються по-різному.

1. Цикл з передумовою. Дії (блок операторів) повторюються, поки

умови, наведені перед початком циклу, виконуються:

While <умова продовження циклу> do

<оператори>;

Якщо в циклі необхідно виконати понад один оператор, то їх варто
взяти в операторні дужки begin – end, тобто утворити з них складний опе-
ратор. Доти, поки дотримується умова, виконується тіло циклу (<операто-
ри>). Якщо умова не виконується з самого початку, то виконання програми
продовжується, починаючи з оператора, що розташований за циклом
(у цьому випадку оператори циклу не виконаються жодного разу).

Серед операторів циклу обов'язково повинен бути присутнім опера-
тор зміни умови продовження циклу (як правило, зміна певної змінної
на величину кроку), інакше цикл перетвориться на нескінченний.

 18

Приклад обчислення суми простого ряду:

s:=0; x:=0;
while x <=5 do begin
 s:=s+x*x;
 x:=x+0.5

end;

2. Цикл з постумовою. Дії повторюються, поки не виконаються умо-

ви, наведені після закінчення циклу.

Repeat

<Оператор 1>;
 . . .
<Оператор n>

Until <умова виходу із циклу>;

Особливості такого циклу:
– тіло циклу виконається як мінімум один раз;
– не потрібні операторні дужки (begin – end).
Приклад:

s:=0; x:=0;
repeat
 s:=s+x*x;
 x:=x+0.5
until x > 5;

3. Цикл із параметром (з лічильником, ітераційний). Дії повторюють-

ся, поки змінна-лічильник не досягне останнього значення:

For <змінна>:=<поч. знач.> to <кін. знач.> do <оператори>;

Особливості такого циклу:
– не потрібно примусово змінювати значень змінної циклу;
– змінна циклу може бути тільки цілого типу;
– крок зміни змінної дорівнює 1 або –1.
Найчастіше цикл із лічильником використовується при роботі з ма-

сивами.
Прості приклади:

s:=0; for i:=0 to 10 do s:=s+sqr(i/2);

s:=0; for i:=10 downto 0 do s:=s+sqr(i/2);

 19

Лабораторна робота 2. Циклічний обчислювальний процес,
що розгалужується

Завдання. Скласти програми для вирішення завдань.

Варіанти 0–10. Знайти суму y =∑
2

1

F

F
 , де а ≤ х ≤ b, х змінюється

з кроком h = c. Варіанти завдань у вигляді значень F1, F2, а, b, с наведені
в таблиці 1.5. Завдання вирішити, використовуючи цикли: а) WHILE (для
непарних варіантів); б) REPEAT (для парних варіантів).

Варіанти 11–20. Обчислити таблицю значень функції





>
≤

=
,),(

;),(

2

1

axякщоxF

axякщоxF
y

для значень аргументу х в інтервалі від хn до xk із кроком hx. Варіанти за-
вдань у вигляді вихідних даних наведені в таблиці 1.6.

Варіанти 21–27. Обчислити таблицю значень функції









≤≤=
1, > x f3(x),

, 1x 0 f2(x),

0, < x f1(x),

якщо

якщо

якщо

y

де f1, f2 й f3 наведені в таблиці 1.7. Методом перебору знайти екстремуми
даної функції на відрізку. Початкове й кінцеве значення відрізка,
а також крок табуляції задавати довільно.

Таблиця 1.5

Вар. F1 F2 a b c
1 2 3 4 5 6
0 xsin x –π π π/10

1 25 xcosx2 xx3x 23 −+ 0.2 2.2 0.2

2 3 3xxcos + 2x

5x3 +
 2.5 7.5 0.5

3 2xx3ln − xtgx2 3 − 0.5 4.5 0.3

4 x3cos2 1x− 2x2x1 −+ –2 6 0.5

5 3 x55xln +− ()1x2sinx 5.2 +− 2.4 6.4 0.4

6 xcose 1x2 +− ()1x2lg + 1.6 4.8 0.3

 20

Продовження таблиці 1.5

1 2 3 4 5 6

7 2x2x 23 −+ xcosx 1x2 +− 3.6 7.2 0.2

8 1x2

1x
ln

−
+

x2sinxtg

x

+

–π π π/10

9 xlnx2 + xtg1

x

+ 0.3 3.3 0.3

10 xtgx1 2 −+ xcosx

xsinx
2 −
+

 1.2 13.2 0.6

Таблиця 1.6

Вар. F1(x) F2(x) xn xk hx a

11 25 xcosx2 xx3x 23 −+ 0.2 2.2 0.2 1.2

12 3 3xxcos + 2x

5x3 +
 2.5 7.5 0.5 5.0

13 2xx3ln − xtgx2 3 − 0.5 4.5 0.3 3.0

14 x3cos2 1x− 2x2x1 −+ –2 6 0.5 3

15 3 x55xln +− ()1x2sinx 5.2 +− 2.4 6.4 0.4 5

16 xcose 1x2 +− ()1x2lg + 1.6 4.8 0.3 3

17 2x2x 23 −+ xcosx 1x2 +− 3.6 7.2 0.2 4.8

18 1x2

1x
ln

−
+

x2sinxtg

x

+

–π π π/10 π/5

19 xlnx2 + xtg1

x

+ 0.3 3.3 0.3 2.3

20 xtgx1 2 −+ xcosx

xsinx
2 −
+

 1.2 13.2 0.6 4.2

Таблиця 1.7

Вар. F1(x) F2(x) F3(x)
1 2 3 4

21 25 xcosx2 xx3x 23 −+
2xx3ln −

22 2x

5x3 +
 2x2x1 −+ xtgx2 3 −

23 x3cos2 1x− 3 x55xln +− ()1x2sinx 5.2 +−

 21

Продовження таблиці 1.7

1 2 3 4

24 2x2x 23 −+ xcosx 1x2 +− xlnx2 +

25 1x2

1x
ln

−
+

x2sinxtg

x

+

xtg1

x

+

26 2xx3ln − xtgx2 3 −
xcosx

xsinx
2 −
+

27 xtgx1 2 −+ 2x

5x3 +
 xx3x 23 −+

Приклади виконання завдання

1. Знайти суму

S =∑ + 12

)sin(

x

x
, де 0 ≤ x ≤ π з кроком π /20,

використовуючи цикл з передумовою.

Кінець

Вивести s

Початок

xn=0, xk=π, hx=π/20

s=0, x=xn

x ≤ xk

12

sin

+
+=

x

x
ss

x=x+xh

так

ні

 22

Program lab2a; { знаходження суми ряду }
Var x,s: real ;
Const xn= 0; xk=pi; hx=pi/ 20;
Begin
 s := 0; x := xn;
 while x <= xk do

begin
s := s + sin(x) / (2*x + 1);
x := x + hx

end ;
writeln ('s =' , s: 7: 4)

End.

2. Обчислити таблицю значень функції





<++
≥+=

,0,32

;0,1)sin(
2 xякщоxx

xякщоx
y

для значень x в інтервалі від –π до π з кроком π /3.

Кінець

Вивести s

Початок

xn=-π xk=π, hx=π/3

x=xn

x ≤ xk

322 ++= xxy

x=x+xh

так

ні

x < 0

1)sin(+= xy

так ні

 23

Program lab2b; { табулювання функції }
Var x,y: real ;
Const xn=-pi; xk=pi; hx=pi/ 3;
Begin
 writeln('TA БЛИЦЯ ЗНАЧЕНЬ ФУНКЦІЇ');
 writeln('*************************');

writeln('* X * Y *');
 writeln('*************************');
 x := xn;

while x <= xk do
 begin
 if x >= 0 then y := sqrt(sin(x))+ 1

else y := sqr(x)+ 2*x+ 3;
 writeln('*' , x: 10: 5, ' *' , y: 10: 5, ' *');
 x := x + hx
 end ;
 writeln('*************************')
End.

3. Знайти екстремуми функції





<++
≥+=

,0,32

;0,1)sin(
2 xякщоxx

xякщоx
y

на інтервалі зміни аргументу від –π до π.

Program lab2c; { екстремуми }
Var x,y,min,max,xmin,xmax: real ;
Const xn=-pi; xk=pi; hx=pi/ 3; { крок задаємо довільно }
Begin
 max:=- 10E+5; min:= 10E+5; x:=xn;
 while x <= xk do
 begin
 if x >= 0 then y:=sqrt(sin(x))+ 1

else y:=sqr(x)+ 2*x+ 3;
 if y > max then begin max:=y; xmax:=x end else
 if y < min then begin min:=y; xmin:=x end ;
 writeln('x=' , x: 10: 5, ' y=' , y: 10: 5);
 x := x + hx
 end ;
writeln(' Мінімум дорівнює ' , min: 10: 5, ' при x=' , xmin: 10: 5);
writeln(' Максимум дорівнює ' , max: 10: 5, ' при x=' , xmax: 10: 5)
End.

 24

1.3 Нестандартні й обмежені типи даних, множини, оператор
вибору варіанта

Як вже було наведено раніше, нові типи описуються в спеціальному

розділі типів або визначаються безпосередньо при описі змінних.
До простих нестандартних типів даних, які описує програміст, відно-

сяться перелічений й обмежений діапазони. Перелічений тип задається
списком значень, яких може набувати змінна. Загальна форма завдання пе-
реліченого типу така:

Type Тname = (Al, A2, ... , AN);

Тут Tname – ім'я нового типу; A1,A2,...,AN визначають константи-

значення нового типу даних. Послідовність значень типу упорядкована.
Наприклад:

Type Season = (winter, spring, summer, autumn);
Var S: Season;
…
 If S = Summer then S:=Autumn;

Відповідно, для значень типів, що перелічують, визначені стандартні

функції succ й pred:

Succ(winter) → spring
Pred(autumn) → summer

Ще раз уточнимо, що значення переліченого типу – це не рядок текс-

ту, а визначені константи.
Відрізок значень будь-якого порядкового типу може бути визначе-

ний як обмежений тип (інтервальний, тип діапазон):

Type Tname = MIN..MAX;

Тут Tname – ім'я типу; MIN, МАХ – ліва й права межі діапазону, ві-

докремлені двома крапками. Наприклад:

Type Days=1..31; Year=1900..2050;
Var d: days; y: year; m: 1..12;

При правильних параметрах транслятора спроба присвоїти змінній

значення, що виходить за межі діапазону, призводить до повідомлення про
помилку.

 25

Поняття множини в Паскалі ґрунтується на математичному визна-
ченні множини: це обмежена сукупність різних елементів. Для побудови
конкретного множинного типу може бути використаний перелічений або
інтервальний тип даних. Тип елементів, що становлять множину, назива-
ється базовим типом.

Множинний тип описується за допомогою службових слів Set of, на-
приклад:

Type M = Set of ‘A’..'D';
Var MS: M;

m2: set of byte;
C: Set of 0..7;

Константи множинного типу записуються у вигляді укладеної у ква-

дратні дужки послідовності елементів або інтервалів базового типу, розді-
лених комами, наприклад: ['A','C'] [0,2,7] [3,7,11..14]. Константа виду []
означає порожню множину.

Множина містить у собі набір елементів базового типу, всі підмно-
жини даної множини, а також порожня підмножина. Якщо базовий тип,
на якому будується множина, має К елементів, то кількість підмножин, що
входять до цієї множини, дорівнює 2 у степені К. Змінна Т множинного
типу

var T: Set of 1..3;

може набувати вісім різних значень:
 [] [1,2]
 [1] [1,3]
 [2] [2,3]
 [3] [1,2,3]

Порядок перелічення елементів базового типу в константах не має
значення.

Значення змінної множинного типу може бути задано конструкцією
виду [T], де T – змінна базового типу.

До змінних й констант множинного типу застосовні операції при-
своювання (:=), об'єднання (+), перетинання (*) і віднімання (-):
 ['A','B'] + ['A','D'] (['A','B','D']
 ['A'] * ['A','B','C'] (['A']
 ['A','B','C'] - ['A','B'] (['C'].

Результат виконання цих операцій – величина множинного типу.
До множинних величин застосовні такі операції: тотожність (=), нетотож-
ність (<>), утримується в (<=), містить (>=). Результат виконання цих опе-
рацій має логічний тип, наприклад:

 26

['A','B'] = ['A','C'] –> FALSE
['A','B'] <> ['A','C'] –> TRUE
['B'] <= ['B','C'] –> TRUE
['C','D'] >= ['A'] –> FALSE.

Для роботи з величинами множинного типу в Паскалі також викори-

стається оператор in, що перевіряє приналежність елемента базового типу,
який розташований ліворуч від знака операції, множині, яка розташована
праворуч від знака операції. Результат виконання – логічний:

A in ['A', 'B'] –> TRUE,
2 in [1, 3, 6] –> FALSE.

Величини множинного типу не можуть бути елементами списку вво-

ду-виводу.
У кожній конкретній реалізації транслятора Паскаля кількість еле-

ментів базового типу, на якому будується множина, обмежена. У Турбо-
Паскалі, наприклад, кількість базових елементів не повинна перевищувати
256.

Оператор вибору варіанта є узагальненням умовного оператора: він
надає змоги виконати один з декількох операторів залежно від значення
деякого виразу, називаного селектором. У загальному випадку оператор
має вигляд

case <селектор> of

<список 1>:<оператор 1>;
<список 2>:<оператор 2>;

…
<список n>: <оператор n>;

else <оператор>
end;

де <селектор> – вираз певного типу;
<оператор> – будь-який оператор мови, у тому числі й складовий;
<список> – список значень виразу селектора, відокремлених

комами або у вигляді діапазону, або одне його значення.
Оператор варіанта вибирає для виконання того оператора, одна з мі-

ток якого дорівнює поточному значенню виразу селектора. Якщо значення
виразу не збігається з жодною з міток, то виконується оператор, що відпо-
відає else. Гілка else необов'язкова. Після закінчення виконання вибраного
оператора керування передається в кінець оператора case. Селектор і мітки
повинні бути одного типу.

 27

Приклад:

case k of

1: y:=k;
2..5: y:=k*k;
6, 7, 9: y:=ln(k);
else y:=0

end;

Приклад ілюструє різні варіанти подання списку значень селектора,

а також необхідність крапки-коми перед else.

Лабораторна робота 3. Інші типи даних і вибір варіанта

Завдання. Обчислити таблицю значень функції

 F1 (X), якщо Х∈Х1
 F2 (X), якщо Х∈Х2

 Y=
 F3 (Х), якщо Х∈ХЗ
 F4 (X), якщо Х∈Х4

для цілочислених значень аргументу Х в інтервалі [Xn .. Xk]. Множини X1,
Х2, Х3 і Х4, а також функції F1, F2, F3, F4 задані в таблицях 1.8 й 1.9. Варіан-
ти наведені у вигляді «Варіант mn».

Таблиця 1.8

M Xn Xk X 1 Х2 ХЗ Х4

0 -10 15 [-2,5]
Парні числа
з інтервалу

[6,10]

Непарні числа
з інтервалу

[6,10]
Інші

1 0 30
Парні числа
з інтервалу

[10,20]

Непарні числа
з інтервалу

[10,20]
[1,9] Інші

2 1 25

Числа,
кратні 3,

з інтервалу
[10,20]

Числа,
не кратні 5,
з інтервалу

[10,20]

[2,7] й [21,23] Інші

 28

Таблиця 1.9

n F1(x) F2(x) F3(x) F4(x)

1 25 xcosx2 xx3x 23 −+ 3 3xxcos + 2x

5x3 +

2 x3cos2 1x− 2x2x1 −+
2xx3ln − xtgx2 3 −

3 3 x55xln +− ()1x2sinx 5.2 +− xcose 1x2 +− ()1x2lg +

4 2x2x 23 −+ xcosx 1x2 +− 1x2

1x
ln

−
+

x2sinxtg

x

+

5 xlnx2 + xtg1

x

+ xtgx1 2 −+ xcosx

xsinx
2 −
+

6 2xx3ln − xtgx2 3 − 25 xcosx2 xx3x 23 −+

7 3 3xxcos + 2x

5x3 +
 3 x55xln +− ()1x2sinx 5.2 +−

8 xcose 1x2 +− ()1x2lg + 2x2x 23 −+ xcosx 1x2 +−

9 1x2

1x
ln

−
+

x2sinxtg

x

+

xlnx2 + xtg1

x

+

0 2xx3ln − xtgx2 3 −
x3cos2 1x− 2x2x1 −+

Приклад виконання завдання

Для цілочислених значень аргументу обчислити таблицю значень
функції

 sin (x)+1, якщо x ε Х1

 ln2 (x), якщо x ε Х2
 z =

 ex-4, якщо x ε Х3
 2 cos(x), якщо x ε Х4

де X1 – множина цілих чисел [0,3]; Х2 – множина парних чисел з інтервалу
[4,10]; Х3 – множина непарних чисел з інтервалу [4,10];
Х4 – інші цілі числа інтервалу [–2,10].

 29

Program lab3; { табулювання функції }
Type arg = - 2..10 ;
Var x:arg; z: real ;
Begin
 for x := - 2 to 10 do begin
 case x of
 0..3 : z := sin(x)+ 1;
 4..10 : if x mod 2 = 0 then z := sqr(ln(x))

 else z := exp(x- 4);
 else z := 2*cos(x)
 end ; {case}
 writeln (' При x =' ,x: 3, ' z =' ,z: 6: 2)
 end
End.

1.4 Складні типи даних – масиви

До складних (структурованих) типах даних у Паскалі відносяться

масиви, записи й файли. Докладніше робота зі структурами даних вивча-
тиметься в курсі «Алгоритми й структури даних», однак ніяке вивчення
основ програмування не може обійтися без поняття масиву.

Масив складається з фіксованого числа компонентів одного типу,
характеризується ім'ям і розмірністю.

Загальний вид опису типу масив:

Type Т = array [T1, T2, … ,Tk] of tc;

де Т – ім'я масиву; Т1,..., Tk – індекси; TC – базовий тип.
Кількість індексів k визначає розмірність масиву. Індекси задаються

у вигляді обмеженого типу даних (діапазону).
Масиви можна описувати безпосередньо в розділі описів

змінних, наприклад:

Var m: array [1..10] of integer;

Кількість індексів, необхідних при звертанні до елемента масиву, ви-

значає k-мірність масиву. При k = 1 масив називається одномірним, при
k = 2 – двомірним. Одномірний масив відповідає поняттю вектора (лінійної
таблиці, рядка), двомірний масив – поняттю матриці (набору векторів,
прямокутної таблиці). Кількість вимірів масиву в Турбо Паскалі обмежена
7, в інших реалізаціях може бути іншою, однак на практиці рідко викорис-
таються масиви із кількістю вимірів понад 4.

 30

Доступ до будь-якого елемента масиву здійснюється записом іден-
тифікатора масиву, за яким у квадратних дужках знаходиться індексний
вираз (номер елемента). Індексний вираз має бути в діапазоні, обумовле-
ному типом індексу. Для оголошеного в прикладі масиву М у програмі до-
ступні такі індексні змінні: М[1], М[2], ... , М[10].

Селективна обробка масиву – це відокремлення елементів, що задо-
вольняють умовам, і обробка цих фрагментів. Відокремлені елементи пе-
рераховують, перемножують, підсумують або формують новий масив. Ча-
сто зустрічаються такі умови обробки елементів масиву:

парні A [i] mod 2 = 0

непарні A [i] mod 2 < > 0

кратні k A [i] mod k = 0

не кратні k A [i] mod k < > 0

на парних місцях i mod 2=0

на непарних місцях i mod 2 < > 0

позитивні A [i] > 0

негативні A [i] < 0

ненегативні A [i] >= 0

в інтервалі [х1,х2] (A [i] >= x1) and (A [i] <= x2)

Якщо необхідно знайти суму певних елементів, то перед початком

циклу змінної суми обов'язково привласнюється 0, а усередині циклу до
цієї змінного по черзі додаються знайдені елементи.

Якщо необхідно знайти добуток певних елементів, то перед почат-
ком циклу змінної добутку обов'язково привласнюється 1, а усередині цик-
лу ця змінна по черзі множиться на знайдені елементи.

Якщо необхідно знайти кількість певних елементів, то перед почат-
ком циклу змінної кількості обов'язково привласнюється 0, а усередині ци-
клу до цієї змінної щоразу додається 1.

При формуванні нового масиву необхідно передбачити другий ін-
декс, що спочатку буде відігравати роль числа елементів у новому масиві
(спочатку – 0, потім у циклі збільшується на 1).

 31

Знаходження найбільшого й найменшого значень масиву виконуєть-
ся в циклі, у якому поточний елемент масиву порівнюється з найбільшим
(найменшим) із всіх попередніх елементів масиву. Якщо поточний елемент
виявиться більше (менше) найбільшого (найменшого) з попередніх, то йо-
го треба вважати новим найбільшим (найменшим). У протилежному разі
найбільше (найменше) зберігає старе значення:





≤
>

=
;Y Y якщо,Y

,Y Y якщо,Y

maximax

maxii

maxY





≥
<

=
.Y Y якщо,Y

,Y Y якщо,Y

minimin

minii

minY

Якщо тілом циклу є інша циклічна структура, то такі цикли назива-

ють вкладеними або складними. Цикл, що містить у собі інший цикл, нази-
вається зовнішнім. Цикл, що знаходиться в тілі іншого циклу, називається
внутрішнім.

Двомірний масив характеризується ім'ям і розмірністю, де перший
індекс визначає рядок, а другий – стовпець. Елемент масиву – змінна, роз-
ташована на перетинанні рядка й стовпця. При обробці таких масивів зви-
чайно й застосовують вкладені цикли.

Приклад опису двомірного масиву:

Var m: array [1..3,1..3] of integer;

Посилання на елемент матриці M, що лежить на перетинанні i-го ря-

дка й j-го стовпця, має вигляд M[i,j].
При обробленні матриць часто доводиться виділяти елементи:

– k-го рядка A[k, j] j=l,...,m

– k-го стовпця A[i, k] i=l,...,n

Для квадратних матриць (m=n):

– головна діагональ A[i,i] i=l,...,n

– побічна діагональ A[i, n+l-i] i=l,…,n

– наддіагональні A[i, j] i>j

– піддіагональні A[i, j] i<j

 32

 Лабораторна робота 4. Обробка одномірних масивів

Завдання. Скласти програму для вирішення задач, варіанти яких на-
ведені в таблиці 1.10.

Таблиця 1.10

Вар. Завдання
1 2

0
Знайти кількість позитивних і суму непарних елементів масиву B
(15)

1
Знайти суму позитивних і кількість непарних елементів масиву A
(10)

2
Обчислити середнє арифметичне елементів масиву Т(15), що
задовольняють умові 5<=Т[і]<=15

3
Обчислити середнє геометричне парних і суму непарних
елементів масиву З(10)

4
Знайти кількість елементів масиву B(16), кратних 4 і не більших за-
даного числа A

5

Знайти суму елементів одномірного масиву розміром 5. Розділити
кожен елемент вихідного масиву на отримане значення. Результат
зберегти в тому самому масиві. Надрукувати в одному рядку

6
Знайти середнє значення елементів заданого масиву розміром 6. Пе-
ретворити вихідний масив, віднімаючи з кожного елемента середнє
значення

7 Обчислити довжину вектора X розміром 7

8
Визначити середнє значення елементів масиву. Потім знайти індекс
елемента масиву, найбільш близького до середнього значення

9
Задано масив розміром 10. Якщо сума елементів виявиться понад
10, то знайти кількість парних елементів, інакше – добуток непарних

10
Задано масив розміром 10. Якщо добуток елементів виявиться понад
100, то знайти суму позитивних елементів, інакше – кількість нега-
тивних

11
Задано масив розміром 10. Якщо кількість парних елементів ви-
явиться понад 5, то підрахувати кількість позитивних елементів, ін-
акше – суму непарних

12
Визначити середнє значення елементів масиву. Потім підрахувати
кількість елементів масиву, що перевищують середнє значення

13 Знайти номер найбільшого позитивного елемента масиву В(10)

14
Знайти різницю максимального і мінімального позитивних парних
чисел масиву A(12)

15
Знайти суму квадратів максимального й мінімального чисел масиву
В(14)

 33

Продовження таблиці 1.10

1 2

16
Знайти максимальний і мінімальний елементи масиву B(20) і помі-
няти їх місцями

17
Знайти суму мінімального позитивного елемента масиву A(14) і йо-
го номера

18
У масиві B(10) поміняти місцями другий й найбільший позитивний
елементи

19
Записати +1 замість максимального парного, а число –1 замість мі-
німального непарного елементів масиву A(10)

20
Знайти мінімальний елемент і його номер масиву B(10), значення
елементів якого лежать в інтервалі від –10 до 10

21
У масиві з 10 чисел знайти найбільший елемент і поміняти його міс-
цями з першим елементом

22
У масиві з 10 чисел знайти найменший елемент і поміняти його міс-
цями з останнім елементом

23
Дано масив цілих чисел, що містить 15 елементів. Записати в новий
масив спочатку всі негативні числа й нулі вихідного масиву, а потім
– усі позитивні, зберігаючи порядок їхнього проходження

24
Задано масив розміром 10. Сформувати два масиви розміром 5,
включаючи до першого елементи вихідного масиву з парними інде-
ксами, а до другого – з непарними

25
Задано масив розміром 10. Сформувати два нових масиви, включа-
ючи до першого парні елементи вихідного масиву, а до другого –
непарні

26
Задано масив розміром 10. Сформувати два нових масиви, включа-
ючи до першого позитивні елементи вихідного масиву, а до другого
– негативні

27
Обчислити середнє геометричне елементів масиву А(10), що задово-
льняють умові 5<=А[і]<=10

Приклади виконання завдання

1. Обчислити середнє арифметичне позитивних елементів

масиву А розміром 10.

Program lab4_1;
Uses Crt;
Const n=10;
Type mas = array [1. .n] of real ;
Var a:mas; i,kol: integer ; sum,sa: real ;
Begin
 clrscr;
 writeln(' Уведіть ' ,n: 2, ' елементів масиву:');
 for i:= 1 to n do read(a[i]);
 writeln(' Вихідний масив:');

 34

 for i:= 1 to n do write(a[i]: 6: 2);
 writeln;
 sum:= 0; kol:= 0;
 for i:= 1 to n do if a[i] > 0 then
 begin
 sum := sum+a[i];
 kol:=kol + 1
 end ;
 writeln(' Сума позитивних = ' ,sum: 6: 2);
 writeln(' Кількість позитивних = ' ,kol: 2);
 if kol > 0 then begin sa := sum / kol;
 writeln(' Середнє арифметичне = ' ,sa: 6: 2)
 end else writeln(' Позитивних чисел немає.')
End.

2. Обчислити значення й порядковий номер найбільшого елемента

масиву В (10).

Program lab4_2;
Uses Crt;
Const n=10;
Type mas = array [1. .n] of real ;
Var b:mas; i,imax: integer ; bmax: real ;
Begin
 clrscr;
 writeln(' Уведіть ' ,n: 2, ' елементів масиву:');
 for i:= 1 to n do read(b[i]);
 writeln(' Вихідний масив:');
 for i:= 1 to n do write(b[i]: 6: 2);
 writeln;
 imax:= 1; bmax:=b[1];
 for i:= 2 to n do if b[i] > bmax then
 begin
 bmax := b[i];
 imax := i
 end ;
 writeln(' Найбільший елемент масиву = ' ,bmax: 6: 2);
 writeln(' Його номер = ' ,imax: 2);
End.

 35

3. У масиві В (10) поміняти місцями перший і найменший елементи.

Program lab4_3;
Uses Crt;
Const n=10;
Type mas = array [1. .n] of real ;
Var b:mas; i,imin: integer ; bmin: real ;
Begin
 clrscr;
 writeln(' Уведіть ' ,n: 2, ' елементів масиву:');
 for i:= 1 to n do read(b[i]);
 writeln(' Вихідний масив:');
 for i:= 1 to n do write(b[i]: 6: 2);
 writeln;
 imin:= 1; bmin:=b[1];
 for i:= 2 to n do if b[i] < bmin then
 begin
 bmin := b[i];
 imin := i
 end ;
 writeln(' Найменший елемент масиву = ' ,bmin: 6: 2);
 writeln(' Його номер = ' ,imin: 2);
 if imin <> 1 then
 begin
 b[imin]:=b[1];b[1]:=bmin;
 writeln(' Новий масив :');
 for i:= 1 to n do write(b[i]: 6: 2);
 writeln
 end else writeln(' Перший елемент є мінімальним.')
End.

4. Сформувати масив, що складається з позитивних елементів масиву

A (10).

Program lab4_4;
Uses Crt;
Const n=10;
Type mas = array [1. .n] of integer ;
Var a,b:mas; i,k: integer ;
Begin
 clrscr;
 writeln(' Уведіть ' ,n: 2, ' елементів масиву:');
 for i:= 1 to n do read(a[i]);
 writeln(' Вихідний масив:');
 for i:= 1 to n do write(a[i]: 3);writeln;
 k:= 0;
 for i:= 1 to n do if a[i] > 0 then
 begin
 k:=k+ 1;
 b[k]:=a[i]
 end ;

 36

 writeln(' Новий масив :');
 for i:= 1 to k do write(b[i]: 3);
 writeln
End.

1.5 Підпрограми

Практично в кожній мові програмування передбачена можливість
об'єднання послідовності операторів (як повторюваного в різних місцях
програми фрагмента, так і просто логічно самостійного фрагмента) в окре-
му підпрограму, до якої можна багаторазово звертатися (викликати)
з будь-якого місця основної програми, звільняючи останню від винесених
у підпрограму фрагментів.

Звертання до підпрограми здійснюється за її ім'ям. При цьому вико-
нання основної програми буде тимчасово припинено, виконаються всі дії
підпрограми, і виконання основної програми знову буде продовжено, почи-
наючи з оператора, що розташовний за оператором виклику підпрограми.

Таким чином, за ім'ям підпрограми ховаються деякі винесені із про-
грами дії, які ініціюються автоматично з появою в програмі звертання
до цієї підпрограми.

Будь-яка підпрограма, своєю чергою, може звертатися до інших під-
програм, а також до самої себе (явище рекурсії).

Структура підпрограми аналогічна структурі всієї програми, тобто
в ній є заголовок, розділ описів і тіло підпрограми. Підпрограма повинна
бути описана до того, як вона буде використана в програмі або іншій
підпрограмі.

Усі змінні, використовувані в підпрограмі, можна поділити на три
категорії:

– глобальні змінні, які описуються в основній програмі, можуть вико-
ристатися як у програмі, так і у всіх її підпрограмах;

– локальні змінні, які описуються й використаються тільки усередині
підпрограми;

– формальні параметри – зарезервовані в заголовку підпрограми змін-
ні, до яких при звертанні до програми будуть занесені із зовнішньої про-
грами конкретні дані або їхньої адреси (посилання).

У Паскалі є два різновиди підпрограм – процедури й функції.
У найпростішому випадку процедура може являти собою лише групу

операторів:

 37

Procedure Switch1;
begin

r:= х; х:=y; y:=r
end ;

Така процедура не має ні параметрів, ні локальних змінних. Усі ви-
користовувані в ній змінні (у нашому прикладі – х, у і r) є глобальними,
тобто вони мають бути описані в зовнішній (основний) програмі. У при-
кладі процедура здійснює обмін значеннями змінних х і y. Ясно, що ці
змінні мають бути доступні зовнішній програмі, тобто оголошення їх гло-
бальними виправдано. А от змінна r – це робоча змінна, використовувана
для тимчасового зберігання:

Procedure Switch2;
var r: real ;
begin

r:= х; х:=y; y:=r
end ;

Однак отримана процедура «жорстко» прив'язана до глобальних

змінних х і y. Тому дані до процедури (а також із процедури) потрібно пе-
редавати як параметри:

Procedure Switch3 (var x,y: real);
var r: real ;
begin

r:= х; х:=y; y:=r
end ;

Приклад. Опишемо процедуру для уведення N цілих чисел. Нехай

в основній програмі для масиву визначений тип mas:

Type mas= array [1..100] of integer ;
Procedure input (var m: mas; n: integer);
{ заголовок процедури}
var i: integer ; { локальна змінна – параметр циклу}
begin

writeln (' уведіть', n:3, ' цілих чисел');
for i:=1 to n do read (m[i]);

end ;

Для виклику процедури в основній програмі або іншій підпрограмі

треба вказати ім'я процедури з узятими в круглі дужки фактичними пара-
метрами, які повинні збігатися за кількістю й типом з формальними пара-
метрами процедури.

 38

Виклик Input (m, 10) означає, що викликається процедура для уве-
дення 10 цілих чисел до масиву M.

Функція призначена для обчислення якого-небудь значення.
У цієї підпрограми дві основних відмінності від процедур:

– заголовок складається зі слова Function, за яким розташоване ім'я
функції, список формальних параметрів і тип функції (тобто тип значення,
що повертається);

– у тілі функції хоча б один раз її імені повинне бути привласнене
значення (тобто значення, що повинне бути передане до основної програ-
ми як результат роботи функції).

Формальні параметри підпрограми вказують, з якими параметрами
треба звертатися до цієї підпрограми. При звертанні до підпрограми фор-
мальні параметри заміщаються на еквівалентні фактичні параметри голо-
вної програми або підпрограми.

Усі формальні параметри можна поділити на дві категорії:
– параметри-значення (підпрограмою не змінюються);
– параметри-змінні (ці параметри підпрограма може змінити, і всі

зміни передаються до основної програми).
Параметр-значення передається до підпрограми у вигляді свого зна-

чення й, отже, підпрограмою змінитися не може, точніше, усі зміни пара-
метра-значення, виконані в підпрограмі, при виході з неї губляться й до
основної програми не повертаються. Параметр-значення вказується в заго-
ловку підпрограми своїм ім'ям і через двокрапку – типом. Якщо парамет-
рів-значень одного типу декілька, їх можна перелічити через кому, а потім
уже вказати загальний тип. Окремі групи параметрів відокремлюються
один від одного крапкою з комою.

Як фактичний параметр на місці параметра-значення при виклику
підпрограми може виступати будь-який вираз сумісного для присвоювання
типу. Цей вираз обчислюється, і отримане значення передається підпрог-
рамі.

Параметри-змінні передаються до підпрограми своїми адресами.
Отже, підпрограма має доступ до цих параметрів і може їх змінювати. При
виході з підпрограми нове значення параметра-змінної повертається осно-
вній програмі. Параметри-змінні вказуються в заголовку підпрограми ана-
логічно параметрам-значенням, але тільки перед ім'ям параметра запису-
ється слово Var. Дія Var поширюється до найближчої крапки з комою. При
виклику підпрограми як фактичний параметр на місці параметра-змінної
повинна використатися тільки змінна ідентичного типу. Використання ви-
разу тут неприпустиме.

Наприклад, в описаній вище процедурі Input параметр M є парамет-
ром-змінною, а параметр N – параметром-значенням. Тому до цієї проце-
дури припустимі такі записи:

Input (M, 10); Input (M, k+2); Input (A, k+SQR(m))

 39

Лабораторна робота 5. Обробка різних масивів з використанням
підпрограм

Завдання. У наведених в таблиці 1.11 завданнях уведення вихідних
даних й їхнє контрольне виведення оформити як процедури, а обробку –
у вигляді функції або процедури. Навести як мінімум два приклади.

Таблиця 1.11

Вар. Завдання
1 2

0
Знайти кількості парних елементів у масивах А, В, C, а потім – їх се-
реднє арифметичне

1
Обчислити відсоток парних елементів у масивах А, В, С. Визначити
максимальний з них

2
Знайти кількості позитивних елементів у масивах А, В, C, а потім – їх
середнє арифметичне

3 Визначити суму максимальних парних елементів масивів A, B, C

4
Знайти середнє геометричне непарних елементів кожного з масивів A,
B, C. Визначити їхню суму

5
Знайти середнє арифметичне елементів головних діагоналей матриць
Х, В, Z і визначити найбільше з них

6

Підрахувати кількість точок, що перебувають усередині кола радіусом
R = 2 і із центром на початку координат, координати точок увести до
масивів Х(20) і Y(20). Відстань від центра до точки обчислювати в пі-
дпрограмі-функції

7

Визначити максимальний з периметрів десяти трикутників, вершини
яких A, B, C задані координатами (x, y) у масивах: AX(10), AY(10),
BX(10), BY(10), СХ(10), CY(10) відповідно. Периметр сторін трикут-
ника обчислювати в підпрограмі-функції

8
Дано три матриці X, Y, Z. Роздрукувати ту з них, у якій більше нульо-
вих елементів

9
Дано три матриці А, В, С. Обчислити !!A!!+!!B!!+!!C!!, де !!X!! -
максимальний за модулем елемент матриці

10

Довжини сторін 10 трикутників задані в масивах А[10], B[10], C[10].
Знайти суму довжин медіан кожного із трикутників і визначити мак-
симальну з них (довжина медіани, проведеної до сторони а, дорівнює:
0.5 / 2b*b+2c*c–a*a)

11
У кожному з масивів А, B, С знайти максимальний за модулем еле-
мент і відняти його з кожного елемента відповідного масиву

12
У кожній з матриць X,Y, Z знайти суми елементів, що лежать нижче
головної діагоналі. Обчислити добуток отриманих значень

13
Дано три квадратні матриці x, y, z. Для кожної з них знайти суму елеме-
нтів, що лежать вище головної діагоналі, визначити максимальну з них

 40

Продовження таблиці 1.11

1 2

14

Задано три масиви А, B і С. Обчислити:

 min(B) + mах(C), якщо min(A) < mах(В);

 t =
 mах(А) + min(B), у противному випадку.

Тут min(X) – мінімальний, а mах(Х) – максимальний елемент масиву X

15
Обчислити середнє арифметичне добутків позитивних, кратних 3,
елементів масивів А, B, С

16
У кожній матриці X,Y, Z знайти номер стовпця, що містить найбільшу
кількість позитивних елементів

17
У кожному масиві А, B, С знайти індекс максимального елемента й
скласти ці індекси

18
Знайти максимальне значення середніх геометричних парних елемен-
тів масивів А, B, С

19
Знайти середню арифметичну кількість позитивних, кратних 3, елеме-
нтів масивів А, B, С

20
Знайти найбільше значення серед сум позитивних елементів побічних
діагоналей квадратних матриць Х, Y, Z

21
Визначити кількість точок, що потрапили усередину верхньої частини
кола радіусом R = 4 і із центром на початку координат. Координати
точок увести до масивів X і Y

22
Дано три масиви А, B, С. Сформувати масиви А1, В1 і C1, що містять
позитивні непарні елементи масивів А, B і С відповідно

23
У масивах А, B, С кожен елемент поділити на середнє арифметичне
елементів масиву

24
У кожній із трьох матриць Х, Y, Z знайти мінімальний елемент і поді-
лити на нього кожен позитивний елемент матриці

25
Підрахувати кількості елементів у матрицях Х, Y, Z, значення яких
перебувають в інтервалі [–3, 15]

26
У кожній із трьох матриць Х, Y, Z знайти максимальний елемент і по-
ділити на нього кожен негативний елемент матриці

27
У кожній матриці X, Y, Z знайти номер рядка, що містить найменшу
кількість негативних елементів

Приклад виконання завдання

Дано три масиви – A (15), B (10), C (7). Знайти суму їх максимальних

парних елементів.

Program lab5;
Uses Crt;
Type mas = array [1..15] of integer ;
Var a,b,c:mas; mc: integer ;

 41

Procedure InMas (Var m:mas; n: integer ; mas_name: char);
Var i: integer ;
Begin
 writeln(' Уведіть масив ' ,

mas_name, ' з ' ,n, ' елементів:');
 for i:= 1 to n do read(m[i])
End;
Procedure OutMas (m:mas; n: integer ; mas_name: char);
Var i: integer ;
Begin
 writeln(' Масив ' ,mas_name, ':');
 for i:= 1 to n do write(m[i], ' ');
 writeln
End;
Function MaxChet (m:mas; n: integer): integer ;
Var i,max: integer ;
Begin
 max:=-maxint;
 for i:= 1 to n do

if (m[i] > max) and (m[i] mod 2 = 0) then max:=m[i];
 if max=-maxint then MaxChet:= 0 else MaxChet:=max
End;
Begin
 clrscr;
 InMas(a, 15, 'A');
 InMas(b, 10, 'B');
 InMas(c, 7, 'C');
 OutMas(a, 15, 'A');
 OutMas (b, 10, 'B');
 OutMas (c, 7, 'C');
 mc:=MaxChet(a, 15)+ MaxChet(b, 10)+ MaxChet(c, 7);
 writeln(' Сума: ' ,mc: 3);
End.

1.6 Оброблення символьних і рядкових даних

У мові Паскаль змінна типу Char (символьна змінна) може набувати
значення з деякої впорядкованої сукупності символів комп'ютера (з послі-
довності ASCII-символів):
...<0<1<...<9<...<A<B<...<Z<...<a<b<c<...<z<....
…<A<Б<В...<Я<...<a<б<...<я<...

Кожному символу із цієї сукупності відповідає деякий код (так зва-
ний код ASCII) – порядковий номер символу в послідовності.

 42

Для символьних даних визначені операції відносини =, <, >, < > і
присвоєння := , a також функції, наведені ще в таблиці 1.3:

Ord(c) – повертає код символу c;
Chr(i) – повертає i-й символ послідовності ASCII, тобто за кодом i

визначає символ;
Succ(i) і Pred(i) – повертають наступний або попередній (відповідно)

символи в ASCII-послідовності.
Значенням символьної змінної (типу char) є тільки один символ.
Тип String (рядок) – послідовність символів довільної довжини

(у Турбо Паскалі – не більше 255 символів), яку можна розглядати як од-
номірний масив символів array [0...n] of char. Відмінною рисою змінної
цього типу є можливість працювати з нею як зі звичайною змінною, так
і як з масивом символів:

var st: string;
…
for i:=1 to length(st) do if st[i]= ' +' then st[i]:= ' - '

При оголошенні типу String[n] визначається максимальна кількість

символів у рядку. Якщо N не зазначено, приймається максимально можли-
ве значення (у Турбо Паскалі – 255).

Перший байт рядка (індекс 0) містить поточну довжину рядка. Пер-
ший значущий символ рядка займає другий байт і має індекс 1.

До рядків можна застосовувати операції зчеплення (конкатенації)
за допомогою символу «+». Рядки також можна порівнювати, причому ря-
дки при цьому можуть мати різну довжину, а порівняння виконується зліва
праворуч відповідно до кодів символів, уважається, що відсутній символ
у більше короткому рядку має код менший, чим будь-який код дійсного
символу. Наприклад: 'x' менше, ніж 'xs'.

При обробці рядкових даних використовуються такі процедури
й функції:

1. Copy (St, N, K) – скопіювати (тобто створити новий рядок) з рядка
ST довжиною K символів, починаючи із символу з номером N; якщо N бі-
льше довжини рядка ST, повертається порожній рядок.

2. Pos (St1, St) – знайти в рядку St перше входження підрядка St1
і повернути номер позиції, з якої він починається; якщо підрядок не знай-
дений, повертається нульове значення.

3. Length (St) – повернути поточну довжину рядка St.
4. Delete (St, N, K) – процедура, що видаляє з рядка St підрядок у K

символів, починаючи із символу N.
5. Insert (St1, St, N) – процедура, що вставляє підрядок St1 у рядок St,

починаючи із символу з номером N; якщо отриманий рядок містить понад
255 символів, усі символи після 255-го відкидаються.

6. Str (X, St) – процедура, що перетворює число x на рядкову змінну,
результат заноситься до рядка ST.

 43

7. Val (St, X, Code) – процедура, що перетворює символьну величину
типу String з рядка на її чисельне значення й заносить результат до змінної
X. Якщо рядок записаний з помилкою, то індекс (позиція) невірного сим-
волу заноситься до змінної Code, інакше Code дорівнює нулю.

Приклади використання підпрограм для роботи з рядками подані в
таблиці 1.12. Припускаємо, що процедури й функції викликаються послі-
довно. Вихідний рядок: st:= 'abcdef123';

Таблиця 1.12 – Приклади використання підпрограм

Підпрограма Результат
St2 := copy (st,2,4) St2 → 'bcde'
K := pos ('cd',st) K → 3
K := length (st) K → 9
delete (st, 2, 4) St → 'af123'
insert ('klm', St, 5) St → 'af12klm3'
str (2.456, st) St → '2.456'
val ('2.456', x, code) Code → 0, x → 2.456
val ('2,456', x, code) Code → 2, x не визначений

Лабораторна робота 6. Оброблення рядків символів

Завдання. Скласти програму, що вводить рядок символів, виконує
його оброблення відповідно до таблиці 1.13 й потім виводить результати.

Таблиця 1.13

Вар. Умова оброблення
1 2
0 Видалити всі символи – цифри
1 Видалити всі символи, що не є цифрами
2 Видалити парні цифри
3 Видалити всі символи від «I» до «N»
4 Видалити всі знаки «+» й «–»
5 Видалити всі літери «X» й «Y»
6 Видалити всі знаки «+», після яких знаходиться цифра
7 Видалити всі літери «В», після яких знаходиться літера «С»
8 Замінити все пари «AB» на «С»
9 Видалити всі символи, що не є латинськими літерами
10 Видалити знаки «+» й «–»
11 Підрахувати, скільки разів зустрічаються символи «+» й «–»

12
Замінити всі знаки оклику («!») на символ «*», а символ «крапка»
(«.») – крапками (три крапки «...»)

 44

Продовження таблиці 1.13

1 2
13 Знайти позицію (номер першого символу) сполучення «МММ»
14 З'ясувати, чи є в рядку послідовність «ЧОТИРИ»

15
Визначити, чи входить до рядка літера «А», і підрахувати кількість
пробілів

16
З'ясувати, чи входить до рядка пари символів, що знаходяться поряд,
«АЛЕ» або «ВІН»

17
З'ясувати, є чи в рядку подвоєні символи (пари однакових символів,
що знаходяться поряд) , надрукувати їх

18 З'ясувати, чи є в рядку пари символів – кома й двокрапка («, :»)
19 Видалити всі символи «+», а символи, що не є «+», подвоїти

20
Послідовності наступних один за одним пробілів замінити одним
пробілом (тобто видалити всі пробіли, які знаходяться безпосеред-
ньо за пробілом)

21
Підрахувати загальну кількість входжень до рядка символів «А»,
«а», «В» й «в»

22 Видалити з рядка всі здвоєні, строєні тощо символи

23
Знайти позицію (номер символу), у якій знаходиться перша кома, і
номер позиції з останньою комою

24 Видалити всі символи «*», а символи, що не є «*», подвоїти

25
Вставити пробіл після кожного символу «.» «,» «!» або «?», якщо за
цими символами не розташовано пробілу (тобто будь-який символ,
крім пробілу)

26 Замінити всі крапки (три крапки «...») одними крапками

27
Вставити після кожного символу крапки («.») один символ пробілу
(«_»), якщо після крапки немає пробілу

Приклади виконання завдання

1. Визначити, скільки разів у заданому рядку символів зустрічається

словосполучення «SA».

Program lab6_1;
Uses crt;
Var st: string ; i, k: integer ; c: char ;
Begin
 writeln(' Уведіть рядок символів:');
 readln(st); k := 0;
 for i:= 1 to length(st)- 1 do
 if copy(st,i, 2) = 'SA' then k := k+ 1;
writeln(' Задане словосполучення зустрілося ' ,k, ' раз.');
 c:=readkey
End.

 45

2. Видалити із заданого рядка символів усі цифри.

Program lab6_2;
Uses crt;
Var st: string ; i: integer ; c: char ;
Begin
 writeln(' Уведіть рядок символів:');
 readln(st); i:= 1;
 while i <= length(st) do
 if (st[i] >= '0') and (st[i] <= '9')

then delete(st,i, 1)
 else i := i + 1;
 writeln(' Отриманий рядок:');
 writeln(st);
 c:=readkey
End.

1.7 Тип запис, файли й файлові типи даних

Запис – це структурований тип даних, що складається з фіксованої
кількості компонент, які називають полями. В одному полі дані мають той
самий тип, а в різних полях можуть мати різні типи.

У записі кожне поле має своє ім'я (ідентифікатор). Кількість полів,
тип й ідентифікатор кожного поля фіксуються у визначенні типу, до якого
ставиться запис. Визначення починається із ключового слова Record,
за яким міститься перелічення всіх полів із вказівкою через двокрапку їх-
ніх типів.

Поля відокремлюються один від одного крапкою з комою. Поля за-
пису можуть бути будь-якого типу. Якщо кілька полів мають той самий
тип, то їхні імена можна перелічувати через кому й потім указати загаль-
ний тип. Завершує визначення типу запису ключове слово End.

Пояснимо на конкретному прикладі. Необхідно зберігати інформа-
цію про студентів (здобувачів освіти), при цьому запис про кожну людину
містить прізвище, ім'я, по батькові, дату народження, групу й середній бал.

Type Date = Record
 Day, Month, Year: Integer
 End;

Student = Record
 Fam, Name, Parent: String [20];
 DR: Date;
 Group: String [10];
 SR: Real

End;
Var S: Student;
 SM: array [1..25] of Student;

 46

Приклад також ілюструє можливість вкладеності записів:
типом поля записи може бути інший запис.

Доступ до полів змінної типу запису здійснюється вказівкою імені
змінної й імені поля, записуваного через крапку:

S.Fam:=' Іванов'; S.DR.Day:=1;

Для того щоб не записувати щоразу ім'я змінної при звертанні до по-

лів запису, можна використати оператор об'єднання With:

For i:=1 to 25 do
With SM[i] do Begin

Readln (Fam); Readln (Name);
Readln (Parent); Readln (Group); Readln (SR);

End;

Більш докладно тема записів (з виконанням лабораторної роботи)
буде розкрита в рамках дисципліни «Алгоритми і структури даних».

Поняття файлу тісно пов'язане з розміщенням інформації на зовніш-
ніх пристроях (магнітних дисках, флеш-накопичувачах і т. п.).

Файлом на комп'ютері називається іменована область пам'яті на вну-
трішньому або зовнішньому носії інформації. Файлом у мовах програму-
вання називається послідовність компонентів одного типу. Компоненти
файлу можуть бути будь-якого типу, за винятком типу файла. Кількість
компонентів у файлі теоретично не обмежена.

Над файловими змінними не можна виконувати ніяких операцій
(привласнювати значення, порівнювати й т. д.). Файлові змінні можна ли-
ше використовувати для читання інформації з файлу й запису інформації
у файл. Загальний вид опису файлового типу:

Type Т = File of Tk;
Var F: Т ;

де T – ідентифікатор типу файлу;
Tk – тип компонента файлу;
F – змінна файлового типу.

Файл може бути заданий безпосередньо при описі змінної типу файл:

Var F: File of real ;

У Паскалі введення-виведення інформації в зовнішній файл здійсню-
ється тільки через файлові змінні. Перед тим, як здійснювати введення-
виведення, файлова змінна повинна бути пов'язана з конкретним зовніш-
нім файлом за допомогою стандартної процедури Assign. Потім файл має
бути відкритий для читання або запису. Після цього можна здійснювати
організацію введення-виведення.

 47

У кожен конкретний момент для оброблення доступний тільки один
компонент файлу (поточний), тобто на цей компонент установлений «по-
точний покажчик» файлу.

Зазвичай усі файли вважаються файлами послідовного доступу. Це
означає, що почати писати у файл потрібно тільки із самого його початку,
дописуючи нові компоненти послідовно, один за одним. Для читання та-
кож треба переглядати файл із самого початку, однак за допомогою проце-
дури Seek можна встановити режим довільного доступу, установлюючи
покажчик поточної позиції файлу на необхідний компонент.

Для того щоб визначити готовність файлу до запису або до читання
інформації, існує стандартна функція EOF(F). Якщо покажчик поточної
позиції файлу перемістився за кінець файлу, то ця функція набуває значен-
ня True (істина), в інших випадках – False (неправда). Функцію EOF можна
використати в умовному операторі If або в операторі циклу While:

while not Eof (F) do
begin
………

Read (F, A);
………
end ;

У цій конструкції здійснюється послідовне читання (і оброблення)

компонентів файлу доти, поки покажчик поточної позиції вказує на черго-
вий компонент (тобто у файлі є ще не оброблені компоненти). Цикл заве-
ршиться, як тільки покажчик поточної позиції переміститься за кінець
файлу (тобто будуть оброблені все компоненти).

Після роботи з файлом його необхідно закрити за допомогою проце-
дури Close.

Для роботи з файлами використаються такі стандартні процедури
(скрізь мається на увазі, що F – ідентифікатор файлу).

1. Assign (F, St) – зв'язує файлову змінну F із зовнішнім файлом, ім'я
якого задається в рядковому виразі (типу String) St. Ім'я файлу має відпові-
дати вимогам операційної системи (для Турбо Паскаля – MS-DOS) і може
містити маршрут (ім'я пристрою й імена каталогів). Усі подальші операції
з F будуть діяти над зовнішнім файлом з ім'ям, заданим в St.

2. Rewrite (F) – створює й відкриває для запису новий файл з ім'ям,
пов'язаним зі змінною F процедурою Assign. Якщо файл із таким ім'ям іс-
нує, він знищується, і замість нього створюється новий порожній файл.
Якщо файл із таким ім'ям відкритий, він закривається, знищується й ство-
рюється наново. Покажчик поточної позиції файлу встановлюється в поча-
ток порожнього файлу (на ознаку кінця файлу), функції EOF(F) привлас-
нюється значення True.

3. Write (F, A) – записує значення змінної А у файл F і переміщає по-
кажчик поточної позиції файлу на наступний компонент.

 48

4. Reset (F) – відкриває наявний файл з ім'ям, пов'язаним зі змінною F.
Якщо файл не існує, видається повідомлення про помилку. Якщо файл уже
відкритий, він спочатку закривається, а потім відкривається знову. Покажчик
поточної позиції файлу встановлюється в початкове положення.

5. Read (F, A) – зчитує з файлу поточний компонент, привласнює йо-
го значення змінної А і переміщає покажчик поточної позиції файлу на на-
ступний компонент. Якщо EOF (F) = True, то при спробі читання виникає
помилка.

6. Seek (F, n) – переміщає покажчик поточної позиції файлу на ком-
понент із номером n. Перший компонент файлу має номер 0. Для перемі-
щення на кінець файлу можна використати процедуру Seek(F, FileSize(F)).

7. Close (F) – закриває відкритий файл, пов'язаний зі змінною F.
Також при роботі з файлами можна використати такі функції:
1. Eof (F) – повертає статус кінця файлу. Результат функції True (іс-

тина), якщо покажчик поточної позиції файлу перебуває на ознаці кінця
файлу, тобто за останнім компонентом файлу, і False (неправда) – в про-
тилежному разі.

2. FileSize (F) – повертає поточний розмір файлу, тобто кількість
компонентів у файлі. Якщо файл порожній, FileSize (F)=0.

3. FilePos (F) – повертає поточне значення покажчика файлу. Якщо
поточне значення покажчика відповідає початку файлу, FilePos повертає 0,
якщо кінцю файлу (тобто EOF(F) =True), то FilePos (F) = FileSize (F).

При формуванні файлу (виведенні у файл) зазвичай використовуєть-
ся така послідовність стандартних процедур й операторів:

Assign – зв'язати файлову змінну із зовнішнім файлом.
Rewrite – відкрити файл для запису.
Write – вивести (у циклі) компоненти у файл.
Close – закрити файл.
Для читання з файлу зазвичай застосовується така послідовність:
Assign – зв'язати файлову змінну із зовнішнім файлом.
Reset – відкрити файл для читання.
Read – вивести (у циклі) компоненти з файлу.
Close – закрити файл.
Якщо в одній і тій самій програмі здійснюється й виведення у файл

і читання з нього, то Assign досить записати один раз.
На практиці дуже часто компонентами файлу є записи. У цьому ви-

падку файлову змінну можна описати, наприклад, у такий спосіб:

Var F: File of Student;

Крім типізованих файлів, у Паскалі використовуються ще два види

файлів. Для виведення текстової інформації це текстові файли, виведення у
які аналогічне виведенню на екран. Текстовий файл не дозволяє довільно
встановити поточний покажчик або обчислити розмір файлу, але дозволяє
використати процедуру Append (відкрити файл для додавання). Читання

 49

з текстового файлу аналогічно читанню даних із клавіатури:

Var G: Text;
Begin

Assign (G, 'Out.txt ');
Reset (G);
Append (G);
…
Writeln(G, 'x= ',x:6:2, ' y= ',y:6:2);
…
Close (G);

End.

Безтипові (нетипізовані) файли дозволяють записувати на диск дові-

льні ділянки пам'яті комп'ютера й зчитувати їх з диска у пам'ять. Операції
обміну з безтиповими файлами здійснюються за допомогою процедур
BlockRead й BlockWrite. Крім того, уводиться розширена форма процедур
Reset й Rewrite. В іншому принципи роботи залишаються такими самими,
як і з компонентними файлами.

Перед використанням логічний файл

var f: File ;

має бути пов'язаний з фізичним за допомогою процедури Assign. Далі файл
має бути відкритий для читання або для запису процедурою Reset або
Rewrite, а після закінчення роботи закритий процедурою Close.

При відкритті файлу довжина буфера встановлюється за замовчуван-
ням у 128 байт. Турбо Паскаль дозволяє змінити розмір буфера введення-
виведення, для чого варто відкривати файл розширеними параметрами
процедур:

Reset (var F: File ; BufSize: Word);
Rewrite (var F: File ; BufSize: Word);

Параметр BufSize задає кількість байтів, зчитувальних з файлу або

записуваних у нього за один обіг. Мінімальне значення BufSize – 1 байт,
максимальне – 64 КБ (65536 байт).

Читання даних з бестипового файлу здійснюється процедурою

BlockRead (var F: File ; var X; Count: Word; var

QuantBlock: Word);

Ця процедура за один виклик здійснює читання в змінну X кількість
блоків, задану параметром Count, при цьому довжина блоку дорівнює дов-
жині буфера. Значення Count не може бути менше ніж 1. За один обіг не
можна прочитати більше ніж 64 КБ.

 50

Необов'язковий параметр QuantBlock повертає кількість блоків (бу-
ферів), прочитаних поточною операцією BlockRead. У випадку успішного
завершення операції читання QuantBlock = Count, у випадку аварійної си-
туації параметр QuantBlock буде містити кількість вдало прочитаних бло-
ків. Зрозуміло, що за допомогою параметра QuantBlock можна контролю-
вати правильність виконання операції читання.

Запис даних до бестипового файлу виконується процедурою

BlockWrite (var F: File ; var X; Count: Word; var

QuantBlock: Word);

Ця процедура здійснює за один обіг запис у файл зі змінної X кілько-

сті блоків, задану параметром Count, при цьому довжина блока дорівнює
довжині буфера. Необов'язковий параметр QuantBlock повертає кількість
блоків (буферів), записаних успішно поточною операцією BlockWrite.

Лабораторна робота 7. Робота із простими файлами

Завдання до варіантів 0–8. Сформувати файл із модулів цілих чи-

сел, знайти умову з таблиці 1.14.

Таблиця 1.14

Вар. Умова для оброблення

0 Суму компонентів файлу

1 Кількість парних чисел серед компонентів

2 Кількість непарних чисел серед компонентів

3 Суму квадратів непарних чисел

4 Суму квадратів парних чисел

5 Середнє арифметичне значення компонентів з парними номерами

6 Найбільше зі значень компонентів з парними номерами

7 Найменше зі значень компонентів з непарними номерами

8 Добуток квадратів компонентів

Завдання до варіантів 9–16. Прийнявши, що координати точок
на площині задаються двома числами x й y, скласти програму, що зчитує
із клавіатури координати точок і записує їх послідовно до файлу: спочатку
x, а потім y. Після завершення уведення здійснюється перегляд файлу
та його оброблення відповідно до таблиці 1.15.

 51

Таблиця 1.15

Вар. Завдання для оброблення

9
Підрахувати кількість точок, що попадають у коло радіуса 4 із
центром на початку координат

10 Знайти суму відстаней кожної точки від центра координат

11
Підрахувати кількість точок, що потрапляють до прямокутника,
утвореного осями координат і прямими х = 2 й в = 4

12 Знайти середнє відхилення (відстань) точок від осі OX

13 Знайти середнє відхилення (відстань) точок від центра координат

14
Підрахувати кількість точок, що лежать поза колом радіуса 2 з
центром у точці (2, 2)

15 Знайти середнє відхилення (відстань) точок від осі OY

16
Підрахувати кількість точок, що лежать поза трикутником, утворе-
ним осями координат і прямою y = 2x + 1

Завдання до варіантів 17–27. Сформувати файл із послідовності

(–1)k *0.3k/(k+1). Знайти умову з таблиці 1.16.

Таблиця 1.16

Вар. Умова для оброблення

17 Суму компонентів файлу

18 Добуток компонентів файлу

19 Суму квадратів компонентів файлу

20 Модуль суми компонентів файлу

21 Квадрат добутку компонентів файлу

22 Найбільший з компонентів файлу

23 Найбільший з компонентів з непарними номерами

24 Суму найбільшого й найменшого зі значень компонентів файлу

25 Середнє арифметичне модулів компонентів файлу

26 Квадрат максимального з компонентів файлу

27 Квадратний корінь із суми компонентів файлу

Приклад виконання завдання

Сформувати файл із квадратів цілих чисел; знайти суму парних чи-
сел і кількість непарних чисел серед компонентів файлу. Ознакою кінця
уведення інформації у файл вважати уведення числа «нуль».

 52

Program lab7;
Var f: file of integer ; x,s,k: integer ; c: char ;
Begin
 assign(f, 'lab7.dat');
 rewrite(f);
 writeln(' Уведіть цілі числа. Ознака кінця - 0');
 repeat
 read(x);
 x := sqr(x);
 write(f,x)
 until x = 0;
 reset(f);
 writeln(' Зміст файлу: ');
 s:= 0; k:= 0;
 while not eof(f) do
 begin
 read(f,x); write(x: 4);
 if x mod 2 = 0 then s := s + x else k := k + 1
 end ;
 close(f);
 writeln;
 writeln (' Сума парних чисел: ' ,s);
 writeln (' Кількість непарних чисел: ' ,k);
End.

1.8 Модулі

Щоб зробити основну програму більш зрозумілою для прочитання,

звичайно рекомендується всі використовувані в ній підпрограми виносити
в окремий файл, називаний модулем. Модуль має таку структуру:

Unit < ім' я>;
Interface

<перший розділ описів>
Implementation

<другий розділ описів>
<розділ змісту>

Begin
<секція ініціалізації>

End.

 53

Unit – заголовок модуля, що повинен збігатися з ім'ям файлу модуля;
Interface – секція опису констант, змінних і заголовків підпрограм,

які доступні як безпосередньо в модулі, так і програмам, що звертаються
до нього;

Implementation – секція опису констант, змінних і заголовків підпро-
грам, які доступні тільки в межах модуля, а також тіла підпрограм, описа-
них у секції Interface.

Секція ініціалізації, що може бути відсутньою, містить оператори,
що виконуються перед початком роботи головної програми. Якщо секція
ініціалізації відсутня, то слово Begin також відсутнє.

Варто звернути увагу, що слова Interface й Implementation – це не
оператори й не описи, тому вони не закінчуються крапками з комами,
і в їхніх рядках не можуть розміщатися інші оператори або описи програми.

Підключення модуля здійснюється командою Uses <ім'я>:

Uses Unit1, Unit2, Unit3;

Якщо в інтерфейсних секціях двох модулів виявляться однойменні

ідентифікатори, то за замовчуванням буде використаний ідентифікатор
з модуля, наведеного в списку пізніше (праворуч). Припустимо запис через
крапку: «ім'я модуля . ім'я ідентифікатора».

Бібліотеки підпрограм Free Pascal містять кілька убудованих модулів
для роботи з екраном як у текстовому, так й у графічному режимах. На-
приклад, при використанні модуля Crt (після заголовка програми необхід-
но написати «uses crt») можна викликати процедуру очищення екрана
(clrscr), затримки виконання програми до натискання будь-якої клавіші
(readkey) або задана кількість мілісекунд (delay).

Модулі для роботи із графікою Graph (у Free Pascal) і GraphABC
(в ABC-Паскалі) містять низку процедур і функцій, що дозволяють малю-
вати на екрані графічні об'єкти. Частина з них наведена в таблиці 1.17.

Необхідно пам'ятати, що будь-яка робота із графікою в Free Pascal
починається з ініціалізації відповідного режиму процедурою
InitGraph(Gd,Gm,Path), де Gd,Gm:integer (номера режимів), Path:string
(шлях до графічних драйверів), а закінчується процедурою CloseGraph. Лі-
вий верхній кут екрана має координати (0,0), правий нижній – (639,479)
або (799,599). Водночас в ABC-Паскалі необхідність у відкритті й закритті
графічного режиму відсутня.

Повний перелік підпрограм модуля Graph (GraphABC) можна одер-
жати, нажавши Ctrl+F1 на кожному з набраних імен.

 54

Таблиця 1.17 – Деякі процедури й функції модулів Graph й GraphABC

Назва в Free Назва в ABC Опис
InitGraph(Gd,Gm, '') Немає Ініціалізація граф. режиму
Rectangle
(x1,y1,x2,y2)

DrawRectangle
(x1,y1,x2,y2)

Прямокутник (задані координа-
ти двох вершин)

Bar(x1,y1,x2,y2)
FillRectangle
(x1,y1,x2,y2)

Зафарбований прямокутник

Circle(x,y,r)
Окружність з центром у (x,y) і
радіусом r

Arc(x,y,a1,a2,r) Arc(x,y,r,a1,a2)
Дуга окружності від кута a1 до
a2, причому кути задаються в
градусах від 0 до 360

PieSlice(x,y,a1,a2,r) FillPie (x,y,r,a1,a2) Зафарбована дуга окружності

SetFillStyle(t,c)
SetBrushHatch(bh)
SetBrushStyle(bs)

Встановити заливання номером t
(типом bh, bs) і кольорами c

Var fills:array[1..4] of
PointType;
FillPoly (SizeOf(fills)
div SizeOf(PointType),
fills)

Var fills: array of
Point;
FillPolygon (fills)

Заливання ділянки попередньо
заданим типом заливання

Line(x1,y1,x2,y2)
Пряма лінія із точки (x1,y1) до
(x2,y2)

LineTo(x2,y2)
Пряма лінія з поточного місця
до точки (x2,y2)

MoveTo(x2,y2)
Перенести поточний покажчик
до точки (x2,y2)

PutPixel(x,y,color)
У точці (x,y) намалювати точку
кольорами color (0..7)

C:=GetPixel(x,y) Номер кольорів у заданій точці
SetColor(c) SetPenColor(c) Установити кольори ліній
C:=GetColor C:=PenColor Прочитати кольори ліній
SetBkColor(c) SetBrushColor(c) Установити кольори фону
C:=GetBkColor C:=BrushColor Прочитати кольори фону
C:=GetMaxColor Номер білого кольору
X:=GetMaxX Максимальна координата за X
Y:=GetMaxY Максимальна координата за Y
OutText(st) Немає Виведення рядка в поточне місце
OutTextXY(x,y,st) TextOut(x,y,st) Виведення рядка в (x,y)
CloseGraph Немає Закриття графічного режиму

 55

Лабораторна робота 8. Побудова графічних зображень

Завдання. З використанням модуля роботи із графікою скласти про-

граму для малювання на екрані трьох зображень із таблиці 1.18 відповідно
до варіанта (наприклад, якщо ваш варіант № 11, то необхідно намалювати
зображення № 11, 12 й 13).

Таблиця 1.18

№ 0, 15 № 1, 16 № 2, 17

№ 3, 18 № 4, 19 № 5, 20

№ 6, 21 № 7, 22 № 8, 23

 56

Продовження таблиці 1.18

№ 9, 24 № 10, 25 № 11, 26

№ 12, 27 № 13 № 14

Приклад виконання завдання

Рисунок 1.1

У середовищі Free Паскаля:

Program graphics;
Uses graph;
Var gd,gm,xc,yc: integer ;
 fills: array [1..3] of PointType;
begin
 gd:=detect;initgraph(gd,gm,'');
 if graphresult <> 0 then halt(1);
 xc:=100;yc:=100;
 SetFillStyle(3,GetMaxColor);

 57

 pieslice(xc,yc,270,360,75);
 pieslice(xc,yc,0,90,75);
 fills[1].x:=xc;fills[1].y:=yc-75;
 fills[2].x:=xc-75;fills[2].y:=yc;
 fills[3].x:=xc;fills[3].y:=yc+75;
FillPoly(SizeOf(fills) div SizeOf(PointType), fills);

line(xc-90,yc,xc+90,yc);line(xc,yc-90,xc,yc+90);
line(xc,yc-75,xc-75,yc);line(xc-75,yc,xc,yc+75);

 moveto(xc-75-16,yc+2);outtext('-1');
 moveto(xc+75+2,yc+2);outtext('1');
 moveto(xc+2,yc-75-8);outtext('1');
 moveto(xc+2,yc+75+2);outtext('-1');
 moveto(xc+90-8,yc-9);outtext('X');
 moveto(xc-9,yc-90);outtext('Y');
 readln;cleardevice;
 closegraph
End.

У середовищі ABC-Паскаля:

Program graphics;
Uses graphabc;
Var xc,yc:integer;
 fills: array of Point;
Begin
 xc:=100;yc:=100;
 SetPenColor(clBlack);
 SetBrushStyle(bsHatch);
 SetBrushHatch(bhDiagonalCross);
 DrawPie(xc,yc,75,270,360);

DrawPie(xc,yc,75,0,90);
FillPie(xc,yc,75,270,360);
FillPie(xc,yc,75,0,90);

 SetLength(fills,3);
 fills[0].x:=xc;fills[0].y:=yc-75;
 fills[1].x:=xc-75;fills[1].y:=yc;
 fills[2].x:=xc;fills[2].y:=yc+75;
 FillPolyGon(fills);
 SetBrushStyle(bsSolid);
 line(xc-90,yc,xc+90,yc);line(xc,yc-90,xc,yc+90);
 line(xc,yc-75,xc-75,yc);line(xc-75,yc,xc,yc+75);
 textout(xc-75-16,yc+2,'-1');

textout(xc+75+2,yc+2,'1');
 textout(xc+2,yc-75-8,'1');

textout(xc+2,yc+75+2,'-1');
 textout(xc+90-8,yc-9,'X');

textout(xc-9,yc-90,'Y');
End.

 58

1.9 Базові положення ООП й їхнє використання в Паскалі

Завдання даних разом із процедурами й функціями їхнього оброб-

лення перетворює їх на новий тип даних – об'єкт. Структурно об'єкт нага-
дує тип запис, полями якого можуть бути підпрограми. При цьому поля
об'єкта називаються властивостями, а процедури й функції для їхнього об-
роблення – методами.

Як приклад опишемо об'єкт, що дозволяє відкрити й закрити графіч-
ний режим (у середовищі Free Pascal).

program test1;
uses graph;
type gr= object
 gd,gm: integer ;
 procedure graphinit;
 procedure graphclose;
end ;
procedure gr.graphinit;
begin
 gd:=detect;initgraph(gd,gm, '');
 if graphresult <> 0 then begin
 writeln(' Неможливо відкрити графічний режим!');
 halt(1) end
end ;
procedure gr.graphclose;
begin
 closegraph
end ;
var p:gr;
{p – це змінна типу object, або екземпляр об' єкта}
{ програма просто малює точку в центрі екрана}
begin
 with p do begin
 graphinit;
 putpixel(round(getmaxx/ 2), round(getmaxy/ 2), 7);
 readln; { очікування натискання клавіші Enter}
 graphclose
 end ;
end .

Принципи об'єктно-орієнтованого програмування дозволяють вико-

ристати будь-який об'єкт для породження ієрархії «об'єктів-нащадків»
зі спадкуванням доступу кожного з них до коду й даних предка. Тобто, на-
приклад, для малювання точки в центрі екрана ми можемо перетворити
описану вище програму шляхом внесення нового об'єкта як нащадка об'єк-
та gr:

 59

program test2;
uses graph;
type gr= object
 gd,gm: integer ;
 procedure graphinit;
 procedure graphclose;
end ;
procedure gr.graphinit;
begin
 gd:=detect;initgraph(gd,gm, '');
 if graphresult <> 0 then halt(1)
end ;
procedure gr.graphclose;
begin
 closegraph
end ;
point= object (gr)
 x,y: integer ; { координати точки}
 procedure setd(px,py: integer); { завдання координат}
 procedure show; { намалювати точку}
 procedure hide; { сховати – намалювати кольорами фону}
 end ;
procedure point.setd(px,py: integer);
begin
 x:=px;y:=py;
end ;
procedure point.show;
begin
 putpixel(x,y,getmaxcolor);
end ;
procedure point.hide;
begin
 putpixel(x,y,getbkcolor);
end ;
var p:point; {p – це екземпляр об' єкта point}
{ програма малює точку в центрі екрана, а потім видаляє}
begin
 with p do begin
 graphinit; { метод використається як свій власний}
 setd(round(getmaxx/ 2), round(getmaxy/ 2));

{ задаємо координати точки}
 show; readln;

{ малюємо точку й чекаємо натискання клавіші Enter}
 hide; readln;

{ приховуємо точку й знову чекаємо натискання клавіші Enter}
 graphclose
 end ;
end .

 60

Лабораторна робота 9. Переміщення графічних об'єктів

Завдання. Скласти програму, що виконує дії, описувані в індивідуа-
льному завданні (табл. 1.19). Програма повинна складатися як мінімум
із двох частин – основної програми й модуля з описом деяких об'єктів – і пра-
цювати на основі технології об'єктно-орієнтованого програмування.

Таблиця 1.19

Вар. Зміст
1 2
0 Намалювати в центрі екрана десять концентричних окружностей

1
Намалювати в центрі екрана десять вкладених один в одного
прямокутників

2
Переробити програму «кіл на воді» (див. приклад) так, щоб кола
спочатку розходилися з однієї точки, а потім до неї сходилися

3
Переміщати коло за горизонталлю із заданим кроком і затрим-
кою в одну секунду

4
Переміщати коло за вертикаллю із заданим кроком і затримкою в
одну секунду

5
Переміщати прямокутник за горизонталлю із заданим кроком й
затримкою в одну секунду

6
Переміщати прямокутник за вертикаллю із заданим кроком і за-
тримкою в одну секунду

7 Переробити варіант номер 2, замінивши кола на прямокутники.

8
Переміщати коло за діагоналлю із заданим кроком і затримкою в
півтори секунди

9
Переміщати прямокутник за діагоналлю із заданим кроком і за-
тримкою в півтори секунди

10
Розмістити на екрані дві розташовані поруч «» окружності, що
переморгуються

11 Переробити варіант номер 3 для кола, уписаного в прямокутник
12 Переробити варіант номер 4 для кола, уписаного в прямокутник
13 Переробити варіант номер 8 для кола, уписаного в прямокутник

14
Переміщати коло за периметром розташованого в центрі екрана
прямокутника

15
Переміщати коло по вершинах розташованого в центрі екрана
прямокутника

16
Намалювати трикутник довільної форми й переміщати коло за
його периметром

17
Намалювати трикутник довільної форми й переміщати коло по
його вершинах

18 Переробити варіант номер 3 для трикутника
19 Переробити варіант номер 4 для трикутника

 61

Продовження таблиці 1.19

1 2
20 Переробити варіант номер 8 для трикутника
21 Переміщати коло екраном випадковим образом (функція random)

22
Переміщати прямокутник екраном випадковим образом (функція
random)

23
Переміщати трикутник екраном випадковим образом (функція
random)

24
Зробити так, щоб на екрані по черзі виникали й зникали коло,
прямокутник і трикутник

25 Намалювати в центрі екрана десять концентричних окружностей

26
Намалювати в центрі екрана десять вкладених один в одного
прямокутників

27
Переміщати прямокутник за діагоналлю із заданим кроком і за-
тримкою в півтори секунди

Приклад виконання завдання

Написати програму зображення на екрані розбіжних концентричних

окружностей («кіл на воді»).

unit obj_un; { Модуль}
Interface
uses graph;
type gr= object
 gd,gm: integer ;
 procedure graphinit;
 procedure graphclose;
 end ;
 point= object (gr)
 x,y: integer ;
 procedure setd(px,py: integer);
 procedure show;
 procedure hide;
 end ;
Implementation
procedure gr.graphinit;
begin
 gd:=detect;initgraph(gd,gm, '');
 if graphresult <> 0 then begin
 writeln(' Неможливо відкрити графічний режим!');
 halt(1) end
end ;
procedure gr.graphclose;
begin
 closegraph
end ;

 62

procedure point.setd(px,py: integer);
begin
 x:=px;y:=py;
end ;
procedure point.show;
begin
 putpixel(x,y,getmaxcolor);
end ;
procedure point.hide;
begin
 putpixel(x,y,getbkcolor);
end ;
end .

Program lab9; { Програма}
uses crt,graph,obj_un;
type krug= object (point)
 r: integer ;
 procedure setd(px,py,rad: integer);
 procedure show;
 procedure hide;
 end ;
procedure krug.setd(px,py,rad: integer);
begin
 r:=rad;point.setd(px,py)
end ;
procedure krug.show;
begin
 setcolor(getmaxcolor);circle(x,y,r);point.show
end ;
procedure krug.hide;
begin
 setcolor(getbkcolor);circle(x,y,r);point.hide
end ;
var p:krug;i,k: integer ;
begin
 with p do begin graphinit;
 for i:= 1 to 10 do begin setd(100+i* 20, 100 , 1);show;
 for k:= 1 to 10 do begin

hide;setd(100+i* 20, 100 ,k* 10);show;
delay(1000) { затримка в 1 секунду} end

 end ;
 readln; { очікування натискання Enter}
 graphclose
 end ;
end .

При реалізації завдання в середовищі ABC-Паскаля необхідно вида-

лити об'єкт gr (ініціалізація графічного режиму) і по-іншому задавати па-
раметри деяких процедур і функцій.

 63

1.10 Завдання для самостійної роботи

Задача 1
Оператори присвоювання, уведення й виведення інформації

Таблиця 1.20

Вар. Завдання
1 2

1

Складіть програму для рішення системи двох лінійних рівнянь:





=+
=+

.

,

feydx

cbyax

з двома невідомими х, в. Значення невідомих знаходять за фор-

мулами: .,,
∆
−=

∆
−=−=∆ cdaf

y
bfce

xbdae Вважати ∆ ≠ 0

2

Підрахуйте, скільки очок набрала команда «Донбас» у першому
колі чемпіонату з хокею, якщо відомо, що т зустрічей вона вигра-
ла, п зустрічей програла, k зустрічей закінчилися нічиєю, якщо за
виграш команда одержує 2 очки, за нічию – 1 очко, за програш –
0 очок

3

Нехай відомі довжини сторін а, b, c трикутника. Обчислите ви-
соти цього трикутника за формулами:

.
2

),)()((
2

),)()((
2

),)()((
2

cba
pгде

cpbpapp
c

h

cpbpapp
b

h

cpbpapp
a

h

c

b

a

++=

−−−=

−−−=

−−−=

 64

Продовження таблиці 1.20

1 2

4 Знайдіть x із пропорції .
ca

cb

x

ba

+
−=+

5 Скільки відсотків від А + В – C припадає на A? В? C?

6
Складіть програму обчислення ідеальної ваги людини за її зрос-

том за умови, що Ідеальна вага (кг) = Ріст (см) – 100

7

Складіть програму для обчислення часу t зустрічі автомобілів, що
рухаються рівноприскорено назустріч один одному, якщо відомі
їхні швидкості V1 й V2, прискорення а1 й a2 і початкова відстань S
між ними. Відстань S1, пройдена першим автомобілем, обчислюєть-

ся за формулою ;
2

2
1

11

ta
tVS += відстань S2, пройдена другим авто-

мобілем, обчислюється за формулою .
2

2
2

22

ta
tVS +=

Час t зустрічі автомобілів визначається з рівняння

.
2)()()(

,
22

21

21
2

2121

2

2
2

2

1
1

aa

SaaVVVV
tзвідки

ta
tVS

ta
tV

+
+++++−

=








 +−=+

8
Ви поклали гроші в банк на терміновий депозит на квартал з роз-

рахунку 12 % річних. Складіть програму, що обчислить суму, яка
вам належить через 4 місяці

9
Роздрібна ціна чоловічого костюма становить R гривень. Торго-

вельна націнка магазину становить T % від оптової ціни. Складіть
програму визначення оптової ціни костюма

10
Зарплата співробітника приватної фірми становить r гривень на

місяць. Скільки грошей він одержить за пів року після відрахування
податків у розмірі t % щомісяця й s % за пів року?

11
Дано координати вершин деякого трикутника. Обчислите його

периметр

12
Нехай змішано V1 літрів води температури t1 з V2 літрами води

температури t2. Складіть програму обчислення об'єму й температу-
ри утвореної суміші

13

Визначите вартість набору, до якого входять такі цукерки (вар-
тість упакування становить U грн):
Назва Вага Вартість 1 кг
Петровські 200 г K грн
Львівські 300 г Р грн
Чарівниця 250 г R грн
Факел 150 г B грн
Ластівка 200 г L грн

 65

Продовження таблиці 1.20

1 2

14
Скільки часу у хвилинах знадобиться школяру на дорогу від шко-

ли до стадіону, якщо ця відстань становить S км, а середня швидкість
руху школяра – V км/год?

15

Підрахуйте, скільки очок набрала команда «Шахтар» у першому
колі чемпіонату з футболу, якщо відомо, що т зустрічей вона вигра-
ла, n зустрічей програла, k зустрічей закінчилися нічиєю, якщо за ви-
граш команда одержує 3 очки, за нічию – 1 очко, за програш – 0 очок

16 Скільки відсотків від А – В + C припадає на A? В? C?

17
Дано координати вершин деякого трикутника. Обчислите його

площу.

18
Дано координати вершин деякого трикутника. Обчислите висоти

цього трикутника за формулами, наведеним у варіанті 3.

19
Ви поклали гроші в банк на терміновий депозит на півроку з роз-

рахунку 12 % річних. Складіть програму, що обчислить належну вам
суму через 6 місяців

20
Обчислите довжину окружності, площа кола, об'єм кулі заданого

радіуса

21
Дано натуральне число n, що складається із шести цифр. Визначте

кількість сотень і тисяч у ньому

22
Дано число f – кут у градусах. Визначте суміжний до нього кут

у радіанах

23
Обчислите відстань між двома точками на площині з координата-

ми (x1, y1) і (x2, y2)

24
Визначте число, отримане виписуванням у зворотному порядку

цифр заданого цілого тризначного числа x. Привласніть це число
змінній m

25 Поміняйте місцями значення речовинних змінних x й y

Задача 2
Умовний оператор

Таблиця 1.21

Вар. Завдання
1 2

1
Уведіть три числа. Якщо вони можуть бути довжинами сторін

прямокутного трикутника, виведіть їх у порядку зростання й об-
числите площу отриманого трикутника

2
Уведіть три числа. Якщо вони можуть бути довжинами сторін

гострокутного трикутника, виведіть їх у порядку убування й обчи-
слите площу отриманого трикутника

 66

Продовження таблиці 1.21

1 2

3
Уведіть три числа. Якщо вони можуть бути довжинами сторін тупо-

кутного трикутника, виведіть їх у порядку убування й обчислите площу
отриманого трикутника

4
Уведіть три числа. Якщо вони можуть бути сторонами рівносторон-

нього трикутника, обчислите його площу й висоту. Виведіть сторони,
площу й висоту в порядку зростання

5
Уведіть три числа. Якщо вони можуть бути довжинами сторін рівно-

бедреного трикутника, обчислите його висоти. Виведіть довжину осно-
ви й висоти в порядку зростання

6
Уведіть три числа. Якщо вони можуть бути довжинами сторін різно-

стороннього тупокутного трикутника, виведіть їх у порядку зростання
й обчислите площу отриманого трикутника

7
Уведіть три числа. Якщо вони можуть бути довжинами сторін рівно-

бедреного тупокутного трикутника, обчислите його площу. Виведіть
довжини сторін і площу в порядку зростання значень

8
Уведіть три числа. Якщо вони можуть бути довжинами сторін рівно-

бедреного гострокутного трикутника, обчислите його площу. Виведіть
довжини сторін і площу в порядку зростання значень

9
Уведіть три числа. Якщо вони можуть бути довжинами сторін різно-

стороннього гострокутного трикутника, виведіть їх у порядку зростан-
ня й обчислите площу отриманого трикутника

10
Нехай є координати трьох точок на площині. Якщо вони можуть бути

вершинами прямокутного трикутника, обчислите його площу

11
Нехай є координати трьох точок на площині. Якщо вони можуть бути

вершинами гострокутного трикутника, обчислите його площу

12
Нехай є координати трьох точок на площині. Якщо вони можуть бути

вершинами тупокутного трикутника, обчислите його площу. Виведіть
довжини сторін у порядку убування

13

Нехай є координати трьох точок на площині. Якщо вони можуть бути
вершинами рівностороннього трикутника, обчислите його площу й ви-
соту. Виведіть довжини сторін, площу й висоту в порядку зростання
значень

14
Нехай є координати трьох точок на площині. Якщо вони можуть бути

вершинами рівнобедреного трикутника, обчислите його висоти. Виве-
діть довжини основи й висот у порядку зростання значень

15
Нехай є координати трьох точок на площині. Якщо вони можуть бути

вершинами різностороннього тупокутного трикутника, обчислите його
площу

16
Нехай є координати трьох точок на площині. Якщо вони можуть бути

вершинами рівнобедреного тупокутного трикутника, обчислите його
площу. Виведіть довжини сторін і площу в порядку зростання значень

 67

Продовження таблиці 1.21

1 2

17

Нехай є координати трьох точок на площині. Якщо вони можуть
бути вершинами рівнобедреного гострокутного трикутника, обчис-
лите його площу. Виведіть довжини сторін і площу в порядку зрос-
тання значень

18
Нехай є координати трьох точок на площині. Якщо вони можуть

бути вершинами різностороннього гострокутного трикутника, обчи-
слите його площу

19

Нехай є три числа. Якщо вони можуть бути довжинами сторін
трикутника, визначте його вид (різносторонній, рівнобедрений, рів-
носторонній). Обчислите його висоти й надрукуйте їх у порядку
убування

20
Нехай є три числа. Якщо вони можуть бути довжинами сторін

трикутника, визначите його вид (прямокутний, тупокутний, гостро-
кутний). Обчислите його висоти й надрукуйте їх у порядку убування

21

Нехай є координати трьох точок на площині. Якщо вони можуть
бути вершинами трикутника, визначте його вид (різносторонній, рі-
внобедрений, рівносторонній). Обчислите його висоти й надрукуйте
їх у порядку убування

22

Нехай є координати трьох точок на площині. Якщо вони можуть
бути вершинами трикутника, визначте його вид (прямокутний, ту-
покутний, гострокутний). Обчислите його висоти й надрукуйте їх у
порядку убування

23
Складіть програму, що визначала б вид трикутника (рівносторон-

ній, рівнобедрений, різносторонній, прямокутний, тупокутний, гос-
трокутний), якщо за трьома відрізками його можна побудувати

24

Нехай є координати трьох точок на площині. Складіть програму,
що визначала б вид трикутника (рівносторонній, рівнобедрений, рі-
зносторонній, прямокутний, тупокутний, гострокутний), якщо дані
координати вершин дозволяють його побудувати

25 Нехай є координати вершин чотирикутника. Складіть програму,
що визначала б, чи є цей чотирикутник прямокутником

Задача 3

Оператори циклу
Таблиця 1.22

Вар. Завдання
1 2

1
Нехай ,...3,2,

2
;1

1

1
110 =+===

−
−

− kгде
a

aaaa
k

k
kk Знайдіть добуток

a0*a1*…*a n

 68

Продовження таблиці 1.22

1 2

2
Обчислите довжину кривої, що відповідає функції y = f(x) на

відрізку [а,b], приблизно замінивши криву ламаної, отриманої в
результаті поділу відрізка [а,b] на n рівних частин

3

Нехай є речовинні числа а, b (b > а), натуральне п. Отримати
 (f1 + f2 + … + fn)*h,

де ni
hia

hia
f

n

ab
h i ,...,2,1,

))5,0((1

)5,0(
,

2
=

−++
−+=−=

4
Нехай дане ціле число т > 1. Отримати найбільше ціле k, при

якому 4k < т

5
Визначите, до якого найбільшого цілого позитивного степеня

можна піднести число b, щоб результат не перевершував заданої
величини а (b < а)

6
Нехай дане речовинне число x і натуральне число п. Обчисліть:

)12)...(3)(1(

)2)...(4)(2(

−−−−
−−−

nxxx

nxxx

7 Нехай є речовинні числа a, h, натуральне число п. Обчисліть:
f(a)+f(a+h)+f(a+2h)+...+f(a+nh), де f(x)=(x2+1)cos x.

8

Корінь деякого рівняння знаходиться послідовними наближен-

нями за формулою
5

2 3

1
n

n

x
x

−
=+ . Напишіть програму для знахо-

дження такого наближення кореня, при якому різниця за модулем
між двома сусідніми наближеннями не перевершує 10-5, а початко-
ве наближення Х0 = 1

9

Сторона правильного вписаного багатокутника з подвоєною кі-
лькістю сторін виражається через сторону початкового багатокут-
ника an, а радіус описаної окружності R у вигляді формули

.
4

22
2

22

2
n

n

a
RRRa −−= Обчисліть довжину сторони правильного

вписаного 48-кутника

10 Циліндр об'єму 1 має висоту h. Визначте радіус основи циліндра
для значень h, які дорівнюють 0,5; 1; 1,5; ...; 4,5; 5

11

Спосіб послідовних наближень дозволяє знаходити корінь п'я-
того степеня з додатного числа а приблизно за формулою

.
55

4
41

n

nn
x

a
xx +=+ При цьому різниця між хn і

5 a за абсолют-

ною величиною не перевершує .
4

5
1 nn xxa −+ Складіть програму

обчислення кореня п'ятого степеня із числа а з точністю до 10-k із

заданим значенням k, беручи за








>
≤≤

≤
=

.25,25/

,251,5/

,1),95.0,2min(

0

aa

aa

aa

x

 69

Продовження таблиці 1.22

1 2

12 Нехай дане натуральне число n. Отримати найменше число виду
2k, що перевершує n.

13 Нехай дане натуральне число n. Обчисліть: 1 • 2 + 2 • 3 • 4 +... + n
• ... • 2n.

14

Напишіть програму для обчислення кореня n-го степеня з додат-
ного числа а, користуючись послідовними наближеннями

,
1

11 −+ +−=
n
k

kk
nx

a
x

n

n
x k = 0,1,2,… до збігу сусідніх наближень

із точністю ε, якщо задано початкове наближення x0.

15
Нехай дане натуральне число n. Вилучіть із запису цього числа

цифри 3 й 7, залишивши колишнім порядок інших цифр. Наприклад,
із числа 3 171 507 377 має вийти 1150.

16
Нехай дане натуральне число n. Знайдіть найменше серед чисел

nk
n

k
nk ,...,2,1,sin3 =







 + .

17

Нехай дане натуральне число n. Знайдіть a1b1 + a2b2 + … + anbn, де
a1 = b1 = 1,

.,...,2,1,2,
2

1

2

1
1

2
111 nkbababa kkkkkk =+=







 += −−−−

18 Нехай є цілі числа x1, x2, x3, …, x55... Обчисліть величину: x1(x2 +
x3)(x4 + x5 + x6)…(x46+x47+…+x55)...

19 Нехай x1= 0,3; x2 = –0,3; xi = I + sin(xi – 1), i = 3,4,… Серед чисел x1,
x2, … , x100 знайдіть найближче до якого-небудь цілого числа

20
Нехай ,,...,2,1,

1

)1(
sin

1

1 3

ni
i

i

i

i
ai =

+
−+

+
−= де n задано. Знайдіть

суму всіх додатних чисел аi

21
Нехай дане натуральне число n і речовинне число x. Серед чисел:

,,...,2,1),sin(/3)cos(2

nkгдеxe kx k

= знайдіть найближче до якого-
небудь цілого числа

22
Послідовність чисел a1, a2, …, a100 задана формулою ak = sin2(3k +

5) – cos(k2 – l5), k = 1,2,...,100. Визначте, скільки членів послідовності
з номерами 1, 2, 4, 8, 16, ... мають значення менше 0,25

23

Дано речовинне додатне число b. Послідовність a1, a2, a3, …

утворена за законом: ,...3,2,
1

, 11 =−== − i
i

aaba ii Знайдіть перший

від'ємний член послідовності

24

Дано речовинне від'ємне число b. Послідовність a1, a2, a3, …

утворена за законом: .
sin1

1
,

2

1
1 i

a
aba i

i −
+

== − Знайдіть перший від'ємний

член послідовності

 70

Продовження таблиці 1.22

1 2

25

При деяких заданих x, N й E, обумовлених уведенням, обчисліть
суму N доданків заданого виду, а також суму тих доданків, які за
абсолютною величиною більше E. Для другого випадку виконайте
підсумовування для двох значень E, що відрізняються на порядок, і
при цьому визначте кількість доданків, включених до суми. Порів-
няйте результати з точним значенням функції, для якої дана сума
визначає наближене значення при x, що знаходиться в інтервалі
(–R, R).

)(...
!7!5!3

1
)sin(642

∞=+−+−= R
xxx

x

x .

Задача 4

Регулярні типи даних. Одномірні масиви

Таблиця 1.23

Вар. Завдання
1 2

1
Нехай є речовинні числа x1, x2, …, xn, y1, y2, …, yn, r1, r2, …, rn...

З'ясуйте, чи є на площині точка, що належить усім колам c1, c2, …,
cn, де ci має центр із координатами хi, уi і радіус r i

2

Нехай є речовинні числа a1, a2, …, a2n... Ці точки визначають n
інтервалів числової осі (a1, а2), (а3, а4), …, (a2n-i, a2n)... Чи є інтерва-
лом об'єднання цих інтервалів? Якщо так, то вказати кінці об'єдна-
ного інтервалу

3

Нехай є речовинні числа a1, a2, …, a2n... Ці точки визначають n
інтервалів числової осі (a1, а2), (а3, а4), …, (a2n-i, a2n)... Чи є точки
числової осі, що належать принаймні трьом яким-небудь із даних
інтервалів? Якщо так, то вказати яку-небудь із цих точок

4
Нехай є цілі числа a1, a2, … , an... Нехай М – найбільше, m – най-

менше з них. Отримати у порядку зростання всі цілі числа з інтерва-
лу (m, М), які не входять до послідовності a1, a2, …, an

5
Нехай є координати центрів n окружностей й їхні радіуси. Ви-

значте кількість окружностей, що перетинаються

6
Привласніть змінній t значення true, якщо в деякому масиві не-

має нульових елементів і при цьому позитивні елементи чергуються
з негативними, інакше привласніть значення false

7

Нехай є десять гир вагою a1, a2, …, a10... Позначимо через сk чис-
ло способів, якими можна скласти вагу k, тобто сk – це число рішень
рівняння a1x1 + a2x2 + … + a10x10 = k, де xi може набувати значення 0
або 1 (i = 1,..., 10). Отримати c1, c2, …, c10...

 71

Продовження таблиці 1.23

1 2

8

Пряма на площині може бути задана рівнянням ax + by = з, де a,
b одночасно не дорівнюють нулю, а, b, с – цілі. Нехай є коефіцієнти
декількох прямих a1, b1, c1, a2, b2, c2, ..., an, bn, cn. Визначте, чи є се-
ред цих прямих співпадаючі або паралельні

9

Пряма на площині може бути задана рівнянням ax + by = з, де a,
b одночасно не дорівнюють нулю, а, b, с – цілі. Нехай є коефіцієнти
декількох прямих a1, b1, c1, a2, b2, c2, ..., an, bn, cn. Визначите, чи є се-
ред цих прямих три, що перетинаються в одній крапці

10

Нехай є натуральне число n, цілі числа a, х1, х2, …, xn... Якщо в
послідовності х1, х2, …, xn є хоча б один член, який дорівнює а, то
отримати суму всіх членів, що випливають за першим таким чле-
ном, інакше – знайдіть мінімальний серед непарних чисел послідов-
ності х1, х2, …, xn

11
Нехай є цілі числа a1, a2, …, an, серед яких можуть бути повто-

рювані. Складіть новий масив із чисел, які входять до послідовності
по одному разу

12
Нехай є цілі числа a1, a2, …, an, серед яких можуть бути повторю-

вані. Складіть новий масив із чисел, узятих по одному з кожної гру-
пи рівних членів даної послідовності

13
Нехай є натуральні числа k, n, речовинні числа a1, a2, …, akn...

Отримати послідовність min(a1, a2, …, ak), min(ak+1, ak+2, …, a2k),
min(ak(n-1)+1, …, akn)

14
Нехай є натуральні числа k, n, речовинні числа a1, a2, …, akn...

Отримати послідовність max(a1, a2, …, ak), max(ak+1, ak+2, …, a2k),
max(ak(n-1)+1, …, akn)

15
Нехай є натуральні числа k, n, речовинні числа a1, a2, …, akn... Оде-

ржіть min(a1 + a2 + … + ak, ak+1, ak+2, …, a2k, …, ak(n-1)+1, …, akn)

16
Нехай є натуральні числа k, n, речовинні числа a1, a2, …, akn...

Отримати max(a1 + a2 +…+ak, ak+1, ak+2, …,a2k, …,ak(n-1)+1, …,akn)

17
Нехай є натуральні числа k, n, речовинні числа a1, a2, …, akn...

Отримати послідовність min(max(a1, a2, …, ak), max(ak+1, ak+2, …,
a2k), max(ak(n-1)+1, …, akn))

18
Нехай є натуральні числа k, n, речовинні числа a1, a2, …, akn...

Отримати послідовність max(min(a1, a2, …, ak), min(ak+1, ak+2, …,
a2k), min(ak(n-1)+1, …, akn))

19
Нехай дана послідовність чисел. Усі її елементи, які не дорівню-

ють нулю, перенесіть, зберігаючи їхній порядок, у початок даної
послідовності, а нульові – у кінець

20
Нехай числова пряма поділена на довільні відрізки точками a1, a2,

…, an... З'ясуйте, якому з відрізків належить дана точка х

 72

Продовження таблиці 1.23

1 2

21
У масиві з n елементів підрахуйте кількість четвірок ai, ai+1, ai+2,

ai+3, членів, що йдуть один за одним, з яких усі члени рівні

22
У масиві з n елементів підрахуйте кількість четвірок ai, ai+1, ai+2,

ai+3, членів, що йдуть один за одним, з яких усі члени різні

23
Довільний опуклий багатокутник заданий координатами своїх ве-

ршин на площині. Знайдіть саму довгу діагональ даного багатокут-
ника

24
Довільний опуклий багатокутник заданий координатами своїх ве-

ршин на площині. Знайдіть саму коротку діагональ даного багато-
кутника

25
Обчислите площу довільного опуклого багатокутника, заданого

координатами своїх вершин на площині, поділивши багатокутник
на трикутники

Задача 5

Двовимірні масиви. Процедури й функції

У кожному із запропонованих нижче завдань (табл. 1.24) викорис-
тайте процедури уведення й виведення елементів матриці по рядках.

Таблиця 1.24

Вар. Завдання
1 2

1
Перевірте властивість (AT)T = А, де A – вихідна матриця (n х n),

Т означає транспонування. Використайте процедуру транспонуван-
ня

2
Нехай задана речовинна матриця A (n х n). Упорядкувати еле-

менти матриці: a) за неспаданням значень максимальних елементів
у рядках; b) за неспаданням сум елементів рядків

3
У заданій матриці А (n х n) визначте кількість рядків, які впо-

рядковані за зростанням. Використайте підпрограму перевірки впо-
рядкованості рядка

4
У матриці А (n х n) визначте кількість рядків, елементи якого

утворять арифметичну прогресію. Використайте підпрограму пере-
вірки рядка

5
У заданій матриці А (n х n) знайдіть максимум із всіх мінімаль-

них елементів матриці по стовпцях

6
У заданій матриці А (n х n) знайдіть мінімум усіх сум абсолют-

них величин елементів матриці по стовпцях. Для знаходження суми
абсолютних величин стовпця використайте підпрограму-функцію

 73

Продовження таблиці 1.24

1 2

7
Підрахуйте кількість рядків матриці А (n х n), елементи яких

утворять монотонну послідовність. Для визначення факту монотон-
ності використайте підпрограму

8 Ущільните матрицю А (n х n) уліво й нагору. Для виявлення ну-
льових рядків і стовпців використайте підпрограму

9

Елементи матриці A (n x n) обчислюються за формулою
 Ai,j = sin(i*j) (i,j = 1,2,3, …, n)...
Потрібно:
а) сформувати матрицю B:

,
1

1
,, ∑

=
=

k
kiji A

j
B (i,j = 1,2,3, …, n);

б) надрукувати матриці A й B

10
Перевірте, є чи в матриці А (n х n) рядки, що не містять понад

два негативні елементи. Для перевірки рядка використайте підпрог-
раму

11 Нехай дана матриця A (n х n). Побудуйте вектор, кожен елемент
якого містить найменший за абсолютною величиною елемент рядка

12
Складіть програму пошуку мінімального елемента, розташованого

під головною діагоналлю, і максимального елемента, розташованого
над головною діагоналлю заданої речовинної матриці A (n х n)

13 Нехай задана речовинна матриця. Розглядаючи її як вектор рядків,
впорядкуйте її за кількістю непарних елементів у кожному рядку

14
Визначте номера рядків у матриці, у яких елементів, що належать

відрізку [A, B], більше, ніж елементів, що належать відрізкам [–∞;
A], [В; ∞]

15

Нехай дана матриця A (n х n). Побудуйте логічний вектор, кожен
елемент якого набуває значення true, якщо серед елементів i-й рядка
матриці А є хоча б два рівних, і значення false – у противному випа-
дку. Скористайтеся логічною функцією, що для i-го рядка виконує
зазначену перевірку

16

Нехай дана матриця A (n х n). Побудуйте вектор, кожен елемент
якого дорівнює найбільшій кількості рівних елементів у відповідно-
му до рядка матриці А. Скористайтеся функцією, що визначає цю кі-
лькість в i-му рядку матриці A

17
Нехай дана матриця A (n х n). Побудуйте логічний вектор, кожен

елемент якого дорівнює true, якщо в рядку існує елемент, що поділяє
весь масив на дві частини з однаковою сумою елементів у кожній

18 Перевірте, чи вірно, що кількість рядків матриці A (n х n), у якій
всі числа непарні, кратно заданому числу х

19

Нехай дана матриця A (n х n). Побудуйте логічний вектор, кожен
елемент якого дорівнює true, якщо серед елементів відповідного ря-
дка матриці A є хоча б один елемент, що належить відрізку [0,5; 1], і
false – в протилежному разі. Скористайтеся логічною функцією, що
робить відповідну перевірку в i-му рядку

 74

Продовження таблиці 1.24

1 2

20

Нехай дана матриця A (n х n). Побудуйте вектор, кожен елемент
якого дорівнює кількості елементів в i-му рядку матриці A, не при-
належному відрізку [0; 10]. Скористайтеся функцією, що робить
відповідну перевірку в i-му рядку

21

Нехай дана матриця A (n х n). Побудуйте вектор, кожен елемент
якого дорівнює сумі елементів i-го рядка матриці A, більших, ніж
значення мінімального елемента в цьому рядку. Скористайтеся фун-
кцією, що визначає відповідну операцію в кожному рядку матриці A

22
Нехай дана матриця A (n х n). Впорядкуйте рядки за неспаданням

сум цифр елементів цього рядка. Скористайтеся функцією, що ви-
значає для кожного числа суму його цифр

23

Надрукуйте рядки й стовпці матриці W (n х n), на перетинанні
яких знаходяться максимальні й мінімальні елементи, якщо елемен-
ти матриці обчислюються за формулами:









>+
=
<+

=
.,

,,2/1

,,

2

2

,

jiji

ji

jiji

W ji

24

Елементи матриці A (n x n) обчислюються за формулою
 Ai,j = i*sin(j) + sin(i) (i,j = 1,2,3, …, n)...
Потрібно:
а) сформувати матрицю B:

,
222

.

,

,
jiA

A
B

ji

ji

ji ++
= (i,j = 1,2,3, …, n);

б) надрукувати сформовані матриці A, B й їхній добуток A*B

25
Нехай дана матриця A (n x n), де Ai,j = (–1)i*i*j. Побудуйте й на-

друкуйте матрицю B, елементи якої визначаються за правилом:
Bi,j = Ai,j * max Ai,k (1 ≤ k ≤ n)

Задача 6
Рядки, записи, множини. Огляд усіх пройдених тем

Таблиця 1.25

Вар. Завдання
1 2

1 Складіть програму обчислення суми номерів місць, на яких у слові
S знаходяться літери, що позначають голосні звуки

2

Нехай уводиться послідовність чисел у діапазоні від 1 до 255.
Ознака кінця послідовності – 0. Визначте змінні min й max як мініма-
льне й максимальне з уведених чисел. Надрукуйте по одному разу всі
числа з інтервалу (min, max), які не були уведені

 75

Продовження таблиці 1.25

1 2

3
Нехай уводиться послідовність символів. Ознака кінця послідовно-

сті – крапка. Надрукуйте всі латинські літери, які є в даній послідов-
ності символів

4
Нехай задана довільна послідовність символів. Ознака кінця послі-

довності – крапка. Надрукуйте ті символи, які зустрічаються в даній послі-
довності більше одного разу

5

Нехай даний текст, що закінчується крапкою. Текст складається зі
слів, відокремлених пробілами. Слова являють собою довільну послі-
довність символів, відмінних від пробілу. Надрукуйте всі слова, які
складаються з тих самих літер, що й останнє слово тексту

6

Нехай даний текст, що закінчується крапкою. Текст складається зі
слів, відокремлених пробілами. Слово являє собою послідовність ла-
тинських літер. Надрукуйте ті слова, до яких не входить жодна з літер
першого слова

7

Нехай даний текст, що закінчується крапкою. Текст складається зі
слів, відокремлених пробілами. Слово – послідовність російських лі-
тер (як малих, так і великих). Надрукуйте слова, що мають парний
номер, які складаються тільки з повторюваних літер

8

Нехай даний текст, що закінчується крапкою. Текст складається зі
слів, відокремлених пробілами. Слово – послідовність латинських лі-
тер. Надрукуйте слова тексту, що мають непарний номер, у яких не-
має ні однієї повторюваної літери

9
Нехай задана цілочисельна квадратна матриця розмірності n. На-

друкуйте всі значення i (1 < i < n), при яких i-й рядок симетричний, а
i-й стовпець упорядкований за спаданням

10

Нехай задана цілочисельна квадратна матриця розмірності n. Еле-
менти матриці знаходяться в діапазоні від 1 до 100. Надрукуйте всі
цифри із заданого діапазону, яких немає в жодному з рядків заданої
матриці

11

Нехай задана цілочисельна квадратна матриця розмірності n. Відо-
мо, що значення елементів матриці не менше 0 і не більше 30. Надру-
куйте номера тих рядків матриці, які містять усі цілочисельні елемен-
ти, що лежать у діапазоні від мінімального елемента розглянутого ря-
дка до максимального елемента. Наприклад, розглянемо рядки мат-
риці розмірності 5. Якщо рядок складається з елементів 1, 3, 2, 5, 4, то
її мінімальний елемент дорівнює 1, а максимальний – 5. Значення 2, 3,
4 саме становлять усі ті числа, які попадають у проміжок від 1 до 5,
тому номер такого рядка необхідно надрукувати. Якщо ж рядок скла-
дається з елементів 7, 6, 3, 2, 5, то весь діапазон від мінімального еле-
мента 2 до максимального елемента 7 не заповнюється наявними в
рядку значеннями. Не вистачає значення 4. Тому номер такого рядка
друкувати не слід

12

Нехай задана символьна квадратна матриця розмірності n. Надру-
куйте елементи матриці, що лежать на її головній діагоналі, якщо всі
вони відмінні від елементів, що належать побічній діагоналі. Якщо ця
умова не виконується, то надрукуйте елементи побічної діагоналі да-
ної матриці

 76

Продовження таблиці 1.25

1 2

13 Нехай задана символьна матриця розмірності n х m. Надрукуйте всі
символи, що перебувають у стовпцях, елементи яких симетричні

14 Надрукуйте всі цілі числа, що лежать у діапазоні від 5 до 2 500, які
можуть бути у вигляді 5n+7m, де n й m – цілі числа (m, n ≥ 0)

15
Надрукуйте всі цілі числа в діапазоні від 1 до 3 600, які можуть бути

у вигляді n2 + m2, але які не можна подати як
5L + 5k (m, n, k, l > 0)

16
Надрукуйте всі цілі числа в діапазоні від 1 до 1 600, які можуть бути

у вигляді х2 + y2, але які не можна подати у вигляді
ху = c2, де c змінюється від 1 до 5

17

Нехай задані n відрізків із цілочисельними координатами кінців.
Координати кінців знаходяться у діапазоні від 0 до 100 включно. Ви-
значте, чи існує точка із цілочисельними координатами, що належить
усім цим відрізкам

18
У класі навчаються 25 учнів. Кожному учневі були виставлені оцін-

ки за чверть по 15 предметах. Визначте, скільки в класі відмінників,
четвірочників і трієчників

19

Відомі результати анкетування ста осіб. Анкета складається зі 150
пунктів, на які пропонувалося відповісти ствердно, негативно або
«немає певної думки з цього питання». Надрукуйте номера тих пунк-
тів анкети, на які були отримані тільки стверджувальні й тільки нега-
тивні відповіді всіх опитаних (якщо, звичайно, такі пункти є)

20

У місті N є 100 кондитерських магазинів. Відомо, що в кожному із
цих магазинів не більше 20 видів ласощів в асортименті. Які види ла-
сощів є у всіх наявних магазинах? Чи існує магазин, що торгує уні-
кальною продукцією? Перелічите 5 видів ласощів, які є в більшості
магазинів міста N (асортименти кондитерських магазинів розглядайте
як дані переліченого типу)

21

Нехай задані два речення, слова в яких відокремлені комами або
пробілами. Кожне речення закінчується крапкою. Чи можна з літер
першого речення скласти друге речення й навпаки? Якщо не можна
ні те, ні інше, то перелічіть літери, яких не вистачає в першому (дру-
гому) реченні, щоб скласти друге (перше)

22

В їдальні є окремі меню на сніданок, обід і вечерю. Відомо, що в
кожному із цих меню не більше 10 видів страв. Визначите, які види
страв є й на сніданок, і на обід, і на вечерю, якщо такі є. Визначте ви-
ди страв, які є тільки на сніданок, тільки на обід, тільки на вечерю
(види страв розглядайте як дані переліченого типу)

23
Уводиться послідовність слів. Визначте, яке кількість слів буде по-

трібна, щоб залучити всі літери англійського (російського алфавіту).
Уведення слів кінчається, коли залучені всі літери

24
Уводиться слово-зразок. Потім уводиться список слів (не більше

100). Визначте слова, у яких немає хоча б однієї літери зі слова-
зразка. Виведіть такі слова, а також літери, яких немає в слові-зразку

25 Складіть програму обчислення суми номерів місць,
на яких у слові S розміщені літери, що позначають приголосні звуки

 77

2 ОСНОВИ ПРОГРАМУВАННЯ МОВОЮ СІ

2.1 Основні відомості про мову програмування Сі

При викладенні основ нової мови програмування передбачається, що

здобувачі вищої освіти знайомі з основами програмування й уміють стано-
вити нескладні програми мовою Паскаль. Тому тут будуть наведені від-
мінності мови Сі від Паскаля:

– усі ідентифікатори регістрозалежні (a та A – це два різних ідентифі-
катори);

– крапка з комою (;) є не розмежуванням операторів й описів, а закін-
ченням оператора або опису;

– замість операторних дужок begin – end використається блок {}
– присвоєння значення має вигляд = (знак «дорівнює»);
– порівняння даних: дорівнює (==), не дорівнює (!=);
– логічні операції: АБО (||), І (&&) і НІ (!), наприклад:

((x>0)||(y>0))&&(z>0);
– коментарі: /* коментар */ або // до кінця рядка.

Сі надає змоги скорочення запису скрізь, де це можливо (табл. 2.1).

Таблиця 2.1 – Можливість скорочення запису

Паскаль Сі
k:=k+1 k++
k:=k-1 k--
k:=k+2 k+=2
k:=k-2 k-=2
k:=k*2 k*=2
k:=k/2 k/=2
k:=k div n k%=n
m:=k; k:=k+1 m=k++
k:=k+1;m:=k m=++k

Основні типи даних наведені в таблиці 2.2.
Опис змінних відбувається за шаблоном: тип ім'я;
Наприклад:

int k;
int m=5;

Перед типом можна вказати клас пам'яті, до якого відноситься

змінна: auto, register, static, extern.

 78

Таблиця 2.2 – Основні типи даних

Тип даних Розмір, біт Діапазон значень
void 0 Немає даних
char 8 -128…127
unsigned char 8 0…255
int 16 -32768…32767
unsigned int 16 0…65535
long 32 ±2 млрд.
unsigned long 32 0..4 млрд.
float 32 ±3.4E±38
double 64 ±1.7E±308
long double 80 ±3.4E±4932

Область дії змінних: уся програма, функція, блок (останньої можли-

вості в Паскалі не було).
Перетворення типів відбувається так: (ім'я_типу) операнд або

ім'я_типу (операнд). Наприклад: int (k) або (unsigned int) k.
Уведення даних: scanf(формат, список_адрес_змінних);
Наприклад: scanf("%i %f",&k,&a);
Виведення даних: printf(формат, список_змінних);
Наприклад: printf("k=%3i, a=%5.2f",k,a);
Формат містить кількість позицій і код типу даних.

Лабораторна робота 1. Лінійний обчислювальний процес

Завдання. Скласти програму для обчислення функції b = f(x,y,z), де

z = w(x,y) при постійних значеннях х і в. Варіанти завдань у вигляді зна-
чень х, у і функцій f й w задані в таблиці 2.3.

Таблиця 2.3

Вар.),,(zyxf),(yxw x y

1 2 3 4 5

0 ze)xsin(⋅ sin x + cos y –π π

1)y3zctg(e x3 +− yxcos2 + –3.22 0.15

2
z

3

xz

y3cosx

+
+

 ysinx

xy2

− 3.27 –1.84

3 2)zx(

)xy/()zy(

+
++

xtgy

yx2

+
+⋅

 –1.32 9.35

4 zyxxy ⋅++ 23 yx

x5

+ 0.75 –2.55

 79

Продовження таблиці 2.3

1 2 3 4 5

5 ()zyxlg ++ 2y5

xcos
 –5.24 3.35

6
yctgx

xtgy
z + ycosx + 0.32 –5.75

7 22 yx

z

+ yx

ycosxsin

+
+

 –2.54 3.16

8 xe
yxln

z +
+ ycosxsin

x2
22 +

 1.28 –2.82

9
yctg

xtg
zsin +

xlgy

ylgx

+
+

 –0.72 3.29

10
ycos

xlg
zln + y5.0x2 + 11.42 –2.76

11 xtg
yx

z 2
3

+
+

ylnxln

ey

+
 –5.43 1.87

12
xarctg

e
zsin

yx+
+ ycos

y

xsin

x + 3.57 –0.32

13 xsinz y/x + ()xey6x5cos ++ –1.42 12.1

14 zsin
yxlnx2

ex

+
++ ycosxsin 22 + 1.34 –0.65

15 zarctgyx ++ yxln

yx

+
+

 –3.12 1.78

16 ztg
z

x5y4 23

++
 ()yxtg

xx

+
+

 0.72 –3.47

17
zln

exxy y⋅+

yx

ee yx

+
+

 –2.65 5.32

18 zyxlnxsinz ++++
xlg

yxx2 3 ++
 0.32 –1.32

19 ()yxtg

yzx
2

32

+
++

 ()yxsin

yxx 2

+

++
 –4.54 0.45

20 ytgxtgztg ++
yxln

yx

+
+

 2.52 –8.12

21
()

yxz

yxsin

++
+

3

2

yx

yx

+

−
 –0.73 3.28

 80

Продовження таблиці 2.3

1 2 3 4 5

22
3 zy

zxln

+

+
 ()yxcose yx +++ 1.76 –0.75

23
zxln

zyx3

+

++

()
()yxctg

yxtg

−
+

 –0.62 2.45

24 ztgyxlgzlg +++ ytgxsin + 2.65 –4.36

25
zcose

zsine
yx

yx

+
+

−

+

()
()yxtg

yxtg

−
+

 –0.9 1.2

26 xsinez ycosxsin + π –π

27 xsinzln ⋅ ycosxsin 22 + –π π

Приклад виконання завдання

Скласти програму для обчислення функції

()12 += + ytgz yx
,

де y = 1sin +x .
Вихідні дані: x = 2.3.

#include <stdio.h>
#include <math.h>
int main()
{
float x,y,z;
printf(" Уведіть X:\n");
scanf("%f",&x);
y=sqrt(sin(x)+1);
z=pow(2,abs(x+y))*(tan(y)+1);
printf(" Результат: x=%5.2f y=%5.2f z=%5.2f\n",x,y,z);
}

2.2 Різновиди обчислювальних процесів

На відміну від Паскаля, у Сі існують як операція вибору (умови), так
й оператор вибору (умови). Операція вибору застосовується в простих ви-
падках, коли варіантом є один оператор.

Операція вибору: вираз1 ? вираз2 : вираз3.
Наприклад:
y = x > 0 ? sin(x) : cos(x);

 81

Оператор вибору має вигляд

if (вираз) оператор1 else оператор2;

Як й у Паскалі, гілка else може бути відсутньою. Однак тут немає

службового слова then – воно мається на увазі. Сама умова обов'язково має
бути у круглих дужках.

Попередній приклад запишеться так:

if (x > 0) y = sin(x) else y = cos(x);

Замість формули умови можна просто записати арифметичний вираз

або ім'я змінної: нуль означає «неправда», ненульове значення – «істину».
Складні оператори мають бути в «операторних дужках», роль яких

у мові Сі грають фігурні дужки.
Перемикач (оператор вибору одного варіанта з декількох) – один

з небагатьох операторів у Сі, що поступається за своєю функціональністю
Паскаль-аналогу:

switch (вираз)
{
 case вираз_1: оператори_1;
 case вираз_2: оператори_2;
 …
 case вираз_n: оператори_n;
 default: оператори;
}

На відміну від case у Паскалі, коли вибір одного варіанта автоматич-

но завершував роботу оператора, тут необхідно примусово його перерива-
ти, використовуючи службове слово break, інакше перевірка буде продов-
жена по всіх рядках, що залишилися.

Як й у Паскалі, у Сі використається три різновиди циклу, з тими са-
мими назвами.

Цикл із передумовою: while (вираз-умова) {тіло_циклу}
Цикл із постумовою: do {тіло_циклу} while (вираз-умова);
Ітераційний цикл:
for (ініціалізація; вираз-умова; список) {тіло_циклу}
Вкрай відмінним від Паскаля є ітераційний цикл: крім особливої фо-

рми запису, він дозволяє використати в якості ітераційної змінну будь-
якого типу, при цьому крок також може бути різним. Усередині кожного
із трьох блоків циклу for може бути від нуля до декількох операторів, при
цьому вони відокремлюються один від одного комами, а блоки – крапками
з комами.

 82

Приклади:

for (int x=1; x <= 10; x++) {s+=pow(x,2);} // сума ряду від 1 до 10
for (x=1; x <= 5; x+=0.5) {s+=pow(x,2);} // від 1 до 5 із кроком 0.5
for (s=0,x=1; x <= 5; x+=0.5) {s+=pow(x,2);}
for (s=0,x=1; x <= 5; s+=pow(x,2),x+=0.5); // тіло циклу порожнє
for (;;); // формально це не помилка

Для передачі керування використаються оператори:
– go to – перехід на мітку;
– return – повернення із блоку або функції до основної програми,

припинення роботи основної програми;
– break – припинення роботи перемикача або циклу з передачею ке-

рування першому операторові, розташованому за перемикачем або цик-
лом;

– continue – переривання поточної ітерації циклу з передачею керу-
вання останньому операторові циклу, тобто перехід до наступної ітерації.

for (x=1; x <= 5; x+=0.5)
{
 t1=sin(x);
t2=2*x+1;
if (t2 == 0) continue; // аналогічно goto 2;
s+=t1/t2;
if (x > 5) break; // аналогічно goto 3;

2:
 }

3: printf("s=%5.2f",s);

Лабораторна робота 2. Обчислювальний циклічний процес,

що розгалужується

Завдання. Скласти програми для розв'язання задач.

Варіанти 0–10. Знайти суму y =∑
2

1

F

F
 , де а ≤ х ≤ b, х змінюється

із кроком h = c. Варіанти завдань у вигляді значень F1, F2, а, b, с наведені
в таблиці 2.4. Задачу розв'язати, використовуючи цикли: а) із передумовою
(для непарних варіантів); б) з постумовою (для парних варіантів).

 83

Таблиця 2.4

Вар. F1 F2 a b c
0 xsin x –π π π/10

1 25 xcosx2 xx3x 23 −+ 0.2 2.2 0.2

2 3 3xxcos + 2x

5x3 +
 2.5 7.5 0.5

3 2xx3ln − xtgx2 3 − 0.5 4.5 0.3

4 x3cos2 1x− 2x2x1 −+ –2 6 0.5

5 3 x55xln +− ()1x2sinx 5.2 +− 2.4 6.4 0.4

6 xcose 1x2 +− ()1x2lg + 1.6 4.8 0.3

7 2x2x 23 −+ xcosx 1x2 +− 3.6 7.2 0.2

8 1x2

1x
ln

−
+

x2sinxtg

x

+

–π π π/10

9 xlnx2 + xtg1

x

+ 0.3 3.3 0.3

10 xtgx1 2 −+ xcosx

xsinx
2 −
+

 1.2 13.2 0.6

Варіанти 11–20. Обчислити таблицю значень функції





>
≤

=
,),(

;),(

2

1

axякщоxF

axякщоxF
y

для значень аргументу х в інтервалі від хn до xk із кроком hx. Варіанти за-
вдань у вигляді вихідних даних наведені в таблиці 2.5.

Варіанти 21–27. Обчислити таблицю значень функції









≤≤=
1, > x якщоf3(x),

, 1x 0 якщоf2(x),

0, < x якщоf1(x),

y

де f1, f2 й f3 задані в таблиці 2.6. Методом перебору знайти екстремуми да-
ної функції на відрізку. Початкове й кінцеве значення відрізка, а також
крок табуляції задавати довільно.

 84

Таблиця 2.5

Вар. F1(x) F2(x) xn xk hx a

11 25 xcosx2 xx3x 23 −+ 0.2 2.2 0.2 1.2

12 3 3xxcos + 2x

5x3 +
 2.5 7.5 0.5 5.0

13 2xx3ln − xtgx2 3 − 0.5 4.5 0.3 3.0

14 x3cos2 1x− 2x2x1 −+ –2 6 0.5 3

15 3 x55xln +− ()1x2sinx 5.2 +− 2.4 6.4 0.4 5

16 xcose 1x2 +− ()1x2lg + 1.6 4.8 0.3 3

17 2x2x 23 −+ xcosx 1x2 +− 3.6 7.2 0.2 4.8

18 1x2

1x
ln

−
+

x2sinxtg

x

+

–π π π/10 π/5

19 xlnx2 + xtg1

x

+ 0.3 3.3 0.3 2.3

20 xtgx1 2 −+ xcosx

xsinx
2 −
+

 1.2 13.2 0.6 4.2

Таблиця 2.6

Вар. F1(x) F2(x) F3(x)
1 2 3 4

21 25 xcosx2 xx3x 23 −+
2xx3ln −

22 2x

5x3 +
 2x2x1 −+ xtgx2 3 −

23 x3cos2 1x− 3 x55xln +− ()1x2sinx 5.2 +−

24 2x2x 23 −+ xcosx 1x2 +− xlnx2 +

25 1x2

1x
ln

−
+

x2sinxtg

x

+

xtg1

x

+

26 2xx3ln − xtgx2 3 −
xcosx

xsinx
2 −
+

27 xtgx1 2 −+ 2x

5x3 +
 xx3x 23 −+

 85

Приклади виконання завдання

1. Знайти суму

S=∑ + 12

)sin(

x

x ,

де 0 ≤ x ≤ π з кроком π /20,

використовуючи цикл з передумовою.

#include <stdio.h>
#include <conio.h>
#include <math.h>
int main()
{
float Pi=M_PI;
float x=0,s=0,xk=Pi,xh=Pi/20;
while (x<=xk) {
 s+=sin(x)/(2*x+1);
 x+=xh;
}
printf(" Сума=%6.4f\n",s);
getche();
}

2. Обчислити таблицю значень функції





<++
≥+=

0,32

;0,1)sin(
2 xякщоxx

xякщоx
y

для значень Х у інтервалі від –π до π з кроком π /3.

#include <stdio.h>
#include <conio.h>
#include <math.h>
int main()
{
float Pi=M_PI;
float x,y,xn=-Pi,xk=Pi,xh=Pi/3;
printf("\n X Y\n");
for (x=xn;x <= xk;x+=xh) {
 if (x < 0) {y=pow(x,2)+2*x+3;}
 else {y=sqrt(sin(x)+1);}
 printf("%8.5f %8.5f\n",x,y);
}
getche();
}

 86

3. Знайти екстремуми функції

на інтервалі зміни аргументу від –π до π.

#include <stdio.h>
#include <conio.h>
#include <math.h>
int main()
{
float Pi=M_PI;
float x,y,xn=-Pi,xk=Pi,xh=Pi/3,min=1E+10,max=-
1E+10,xmin,xmax;
printf("\n X Y\n");
for (x=xn;x <= xk;x+=xh) {
 if (x < 0) {y=pow(x,2)+2*x+3;}
 else {y=sqrt(sin(x)+1);}
 printf("%8.5f %8.5f\n",x,y);
 if (y > max) {max=y; xmax=x;}
 if (y < min) {min=y; xmin=x;}
}
printf(" Мінімум= %8.5f при x=%8.5f\n",min,xmin);
printf(" Максимум= %8.5f при x=%8.5f\n",max,xmax);
getche();
}

2.3 Покажчики, функції, масиви

Покажчик – це змінна, котра вказує на певне місце в оперативній
пам'яті, де розташовані необхідні дані.

Опис покажчика: тип * ім'я.
Наприклад: int *p;
NULL – покажчик, що нікуди не вказує (обов'язково великими літе-

рами).
При роботі з покажчиком необхідно пам'ятати, що ім'я покажчика

в програмі – це посилання, а ім'я «із зірочкою» – це звертання до вмісту
покажчика. Тобто p – це покажчик, а *p – це значення в комірці пам'яті,
на яке цей покажчик посилається. Якщо написати p++, то це означає зру-
шення покажчика на одну позицію «праворуч», а от *p++ – це вже збіль-
шення на одиницю вмісту комірки пам'яті.

Розглянемо приклад. Описано дані:
int *p=4;
int k=7;

Можливі дії подані в таблиці 2.7.

 87

Таблиця 2.7 – Значення при роботі з покажчиками

Дії *p k
початкові значення 4 7
*p++ 5 7
p++ 7 7
*p++ 8 8
p-- 5 8

На відміну від Паскаля, де два різновиди підпрограм описуються різ-

ними службовими словами, у Сі визначений один вид підпрограми – функція:

тип ім'я (формальні_параметри) {тіло_функції}

Повернення з функції до місця виклику (основної програми або ін-

шої функції) здійснюється оператором return, після якого вказується зна-
чення, що повертається (замість присвоєння цього значення імені функції).
Заголовок функції зі списком параметрів називається прототипом функції.

Можна описати функцію типом void – така функція нічого не повер-
тає в місце виклику й фактично є процедурою (у термінах Паскаля).

Особливістю синтаксису мови Сі є вимога наявності круглих дужок
навіть у випадку відсутності параметрів – тоді дужки порожні.

На відміну від Паскаля, де транслятор перевіряв відповідність спис-
ку формальних параметрів списку фактичних параметрів (як послідовності,
так і типів даних), у Сі ця відповідальність цілком полягає на програмісті.
Таким чином, це можна використати для нетрадиційного розв’язання де-
яких задач, але частіше можна помилитися й одержати невірне
розв’язання.

Певну практичну цінність мають так звані функції зі змінною кількі-
стю параметрів:

int name (int a, ...) { }

Тут після першого формального параметра містяться три крапки,

а при виклику функції кількість фактичних параметрів не обмежено.
Під час роботи із функціями зі змінними параметрами використаєть-

ся той факт, що всі параметри розташовуються в оперативній пам'яті по-
слідовно. Існує два способи розв’язання проблеми. Перший формальний
параметр може розглядатися або як перший елемент списку, що кінчається
заздалегідь певним значенням (наприклад, нулем), або як число наступних
за ним параметрів:

 88

#include <stdio.h>
#include <conio.h>
int summa1(int a,...)
{
 int s=0;
 int *p;
 p=&a;
 while (*p)
 {
 s+=*(p++);
 }
 return s;
}
int summa2(int k,...)
{
 int s=0;
 int *p;
 p=&k;
 while (k)
 {
 s+=*(++p);
 k--;
 }
 return s;
}
int main()
{
 int sum;
 sum=summa1(5,2,4,0);
 printf("%5i\n",sum);
 sum=summa2(3,5,2,4);
 printf("%5i\n",sum);
 getche();
}

Стосовно до функцій у мові Сі існують також поняття переванта-

ження функцій (коли в програмі описується кілька функцій з однаковими
іменами, але різними за числом й типом параметрами) і шаблонів функцій
(можливість описати функцію, дійсну для будь-яких типів параметрів
і значень, що повертаються). Докладно ці теми розглядаються в рамках
об’єктно-орієнтованого програмування.

Як і функція, масив у мові Сі задається спрощено:

тип ім'я [константа];

«Константа» тут – кількість елементів у масиві (у цьому випадку –
одномірному). Нумерація елементів масиву починається завжди з нуля.

Варіанти опису та завдання початкових значень:

 89

int a[5];
int b[5]={1,2,3,4,5};
int c[5]={1,2,3};
int d[]={1,2,3,4,5};
extern int e[];

Написання int e[] буде помилковим – необхідно якимсь чином (яв-

ним або неявним) указати розмір масиву.
Ім'я масиву також є покажчиком на його перший елемент:

a[i] ~ *(a+i);

Синтаксис мови Сі дозволяє при написанні міняти місцями ім'я ма-

сиву й індекс його елемента, однак з практичного погляду робити це не ре-
комендується:

a[i] ~ i[a];

Опис багатомірного (двовимірного) масиву:

тип ім'я [константа1] [константа2];

«Константа1» – кількість рядків, «Константа2» – кількість стовпців.

Як і при описі масиву, так і при звертанні до його елементів, кожен індекс
розміщається в окремій квадратній дужці:

a[i][j];

Якщо ім'я масиву використається як покажчик на його перший еле-

мент, то знайти елемент, розташований на перетинанні i-го рядка й j-го
стовпця, можна за формулою

((a+i)+j);

Варіанти опису двовимірних масивів:

int a[2][2];
int b[2][2]={1,2,3,4};
int c[2][2]={1,2,3};
int d[2][2]={{1},{2,3}};

Треба розрізняти масиви покажчиків (int *a[5]) і покажчик на масив

(int (*a)[5]).

 90

Лабораторна робота 3. Оброблення масивів з використанням
функцій

Завдання. Скласти програму для рішення задач, варіанти яких наве-
дені в таблиці 2.8, з обов'язковим використанням підпрограми для уведен-
ня матриці з екрана, її обробки й висновку на екран.

Таблиця 2.8

Вар. Завдання
1 2

0
З кожного елемента матриці A(3,3) відняти суму її додатних еле-
ментів

1
З кожного елемента матриці A(3,3) відняти суму її парних додат-
них елементів

2
З кожного елемента матриці A(3,3) відняти суму її непарних дода-
тних елементів

3
З кожного елемента матриці A(3,3) відняти суму її парних додат-
них елементів

4
З кожного елемента матриці A(3,3) відняти суму її непарних від'є-
мних елементів

5
З кожного елемента матриці A(3,3) відняти добуток її парних до-
датних елементів

6
З кожного елемента матриці A(3,3) відняти добуток її непарних
додатних елементів

7
З кожного елемента матриці A(3,3) відняти добуток її парних ві-
д'ємних елементів

8
З кожного елемента матриці A(3,3) відняти добуток її непарних ві-
д'ємних елементів

9
Кожен елемент матриці A(3,3) помножити на суму її парних дода-
тних елементів

10
Кожен елемент матриці A(3,3) помножити на суму її непарних до-
датних елементів

12
Кожен елемент матриці A(3,3) помножити на суму її непарних ві-
д'ємних елементів

13
Кожен елемент матриці A(3,3) помножити на добуток її парних
додатних елементів

14
Кожен елемент матриці A(3,3) помножити на добуток її непарних
додатних елементів

15
Кожен елемент матриці A(3,3) помножити на добуток її парних ві-
д'ємних елементів

16
Кожен елемент матриці A(3,3) помножити на добуток її непарних
від'ємних елементів

 91

Продовження таблиці 2.8

1 2

17
Кожен елемент матриці A(3,3) розділити на суму її парних додатних
елементів.

18
Кожен елемент матриці A(3,3) розділити на суму її непарних додат-
них елементів

19
Кожен елемент матриці A(3,3) розділити на суму її парних від'ємних
елементів

20
Кожен елемент матриці A(3,3) розділити на суму її непарних від'єм-
них елементів

21
Кожен елемент матриці A(3,3) розділити на добуток її парних додат-
них елементів

22
Кожен елемент матриці A(3,3) розділити на добуток її непарних до-
датних елементів

23
Кожен елемент матриці A(3,3) розділити на добуток її парних від'єм-
них елементів

24
Кожен елемент матриці A(3,3) розділити на добуток її непарних ві-
д'ємних елементів

25
До кожного елемента матриці A(3,3) додати суму її парних додатних
елементів

26 До кожного елемента матриці A(3,3) додати суму її парних елементів

27
До кожного елемента матриці A(3,3) додати суму її додатних елемен-
тів

Приклади виконання завдання

1. До кожного елемента матриці M(3,3) додати суму її непарних ві-
д'ємних елементів.

#include <stdio.h>
#include <conio.h>
void vvod(int a[3][3])
{
int i,j;
printf(" Уведіть матрицю:\n");
for (i=0;i<3;i++) {
for (j=0;j<3;j++)
{scanf("%i",&a[i][j]);}}
}
void vyvod(int a[3][3])
{
int i,j;
for (i=0;i<3;i++){
for (j=0;j<3;j++)
{printf("%4i",a[i][j]);}
printf("\n");}

 92

}
int summa(int a[3][3])
{
int i,j,sum=0;
for (i=0;i<3;i++){
for (j=0;j<3;j++)
{ if ((a[i][j] < 0) && (a[i][j]%2!=0))
{sum+=a[i][j];}
}}
return sum;
}
void work(int s, int a[3][3])
{
int i,j;
for (i=0;i<3;i++){
for (j=0;j<3;j++)
{a[i][j]+=s;}}
}
int main()
{
int m[3][3];
vvod(m);
printf("\n Вихідна матриця:\n");
vyvod(m);
int s=summa(m);
printf("\n Сума=%3i\n",s);
work(s,m);
printf("\n Результат:\n");
vyvod(m);
getche();
}

2. Кожен елемент матриці M(3,3) поділити на суму її додатних еле-

ментів.

#include <stdio.h>
#include <conio.h>
void vvod(float a[3][3])
{
int i,j;
float b;
printf(" Уведіть матрицю:\n");
for (i=0;i<3;i++) {
for (j=0;j<3;j++)
{scanf("%f",&b);a[i][j]=b;}}
}
void vyvod(float a[3][3])
{
int i,j;
for (i=0;i<3;i++){
for (j=0;j<3;j++)
{printf("%6.2f",a[i][j]);}

 93

printf("\n");}
}
float summa(float a[3][3])
{
int i,j; float sum=0;
for (i=0;i<3;i++){
for (j=0;j<3;j++){
if (a[i][j] > 0) {sum+=a[i][j];}
}}
return sum;
}
void work(float s, float a[3][3])
{
int i,j;
for (i=0;i<3;i++){
for (j=0;j<3;j++)
{a[i][j]/=s;}}
}
int main()
{
float m[3][3];
vvod(m);
printf("\n Вихідна матриця:\n");
vyvod(m);
float s=summa(m);
printf("\n Сума = %5.2f\n",s);
work(s,m);
printf("\n Результат:\n");
vyvod(m);
getche();
}

2.4 Оброблення символьних даних

На відміну від Паскаля, де змінна рядкового типу є зручним елемен-

том програми, який, якщо необхідно, може бути розглянутий як масив сим-
волів, у Сі оброблення символьних даних реалізоване небагато складніше.

У мові Сі рядки можуть задаватися двома способами: як масив сим-
волів (char s[n]) і як послідовність символів (char *s).

У першому випадку рядок – це масив символів, що може обробляти-
ся саме як масив; заздалегідь обмежується розмір пам'яті, який резервуєть-
ся для рядка; ніякі спеціальні функції для оброблення рядка незастосовні.

У другому випадку рядок – послідовність символів, що починається
із зазначеного місця в пам'яті й закінчується спеціальним символом '\0'
(зворотна коса риса й нуль). Ця послідовність уже не може оброблятися як
масив, розмір необхідної пам'яті заздалегідь не визначений, однак для об-
роблення символів може бути використана низка спеціальних функцій.

 94

Також не можна забувати, що будь-яка нова змінна в оперативній
(динамічній) пам'яті має потребу в ініціалізації або за допомогою спеціа-
льних функцій, або при самому описі змінної:

char *st="abcd";

У Сі використаються обидва види лапок (подвійні й одинарні), однак

випадки їхнього застосування різні. В одинарних лапках записуються сим-
воли, а в подвійних – рядки:

char s1='a'; // s1 – це символьна змінна, 1 байт
char *s2="a"; // s2 – це послідовність, 2 байти

У таблиці 2.9 наведений перелік основних функцій для роботи з ряд-

ками (файли string.h, stdlib.h).

Таблиця 2.9 – Функції для роботи з рядками

Функція Прототип і стислий опис дій
1 2

atof double atof (char *str);
Перетворить рядок str на речовинне число типу double.

atoi int atoi (char *str);
Перетворить рядок str на десяткове ціле число

atol long atol (char *str);
Перетворить рядок str на довге десяткове ціле число

itoa char *itoa (int v, char *str, int baz);
Перетворить ціле v на рядок str. При зображенні числа вико-
ристається основа baz (2 < baz < 36). Для негативного числа
й baz = 10 перший символ - "мінус" (-)

ltoa char *ltoa (long v, char *str, int baz);
Перетворить довге ціле v на рядок str. При зображенні числа
використається основа baz (2 < baz < 36)

strcat char *strcat (char *sp, char *si);
Приписує рядок si до рядка sp (конкатенація рядків)

strchr char *strchr (char *str, int c);
Шукає в рядку str перше входження символу з

strcmp int strcmp (char *strl, char *str2);
Порівнює рядки strl й str2. Результат негативний, якщо strl <
str2; дорівнює нулю, якщо strl == str2 і позитивний, якщо strl
> str2 (порівняння беззнакове)

strcpy char *strcpy (char *sp, char *si);
Копіює байти рядка si у рядок sp

 95

Продовження таблиці 2.9

1 2
strcspn int strcspn (char *strl, char *str2);

Визначає довжину першого сегмента рядка strl, що містить
символи, які не входять до множини символів рядка str2

strdup char *strdup (const char *str);
Виділяє пам'ять і переносить до неї копію рядка str

strlen unsigned strlen (char *str);
Обчислює довжину рядка str

strlwr char *strlwr (char *str);
Перетворить літери верхнього регістра в рядку у відповідні лі-
тери нижнього регістра

strncat char *strncat (char *sp, char *si, int kol);
Приписує kol символів рядка si до рядка sp (конкатенація)

strncmp int strncmp (char *strl, char *str2, int kol);
Порівнює частини рядків strl й str2, причому розглядаються
перші kol символів. Результат негативний, якщо strl < str2; до-
рівнює нулю, якщо strl == str2 і позитивний, якщо strl > str2

strncpy char *strncpy (char *sp, char *si, int kol);
Копіює kol символів рядка si у рядок sp («хвіст» відкидається
або доповнюється пробілами)

strnicmp char *strnicmp (char *strl, char *str2, int kol);
Порівнює не більше kol символів рядка strl і рядка str2, не роб-
лячи розходження регістрів (див. функцію strncmp ())

strnset char *strnset (char *str, int c, int kol);
Заміняє перші kol символів рядка str символом c

strpbrk char *strpbrk (char *strl, char *str2);
Шукає в рядку strl першу появу кожного із множини символів,
що входять до рядка str2

strrchr char *strrchr (char *str, int c);
Шукає в рядку str останнє входження символу c

strset int strset (char *str, int с);
Заповнює рядок str заданим символом c

strspn int strspn (char *strl, char *str2);
Визначає довжину першого сегмента рядка strl, що містить
тільки символи, із множини символів рядка str2

strstr char *strstr (const char *strl, const char *str2);
Шукає в рядку strl підрядки str2. Повертає покажчик на той
елемент у рядку strl, з якого починається підрядок str2

strtod double *strtod (const char *str, char **endptr);
Перетворить рядок str на число подвійної точності. Якщо
endptr не дорівнює null, то *endptr повертається як покажчик
на символ, при досягненні якого припинене читання рядка str

 96

Продовження таблиці 2.9

1 2
strtok char *strtok (char *strl, const char *str2);

Шукає в рядку strl лексеми, виділені символами з другого рядка
strtol long *strtol (const char *str, char **endptr, int baz);

Перетворить символьний рядок str до значення «довге число» з
основою baz (2 < baz < 36). Якщо endptr не дорівнює NULL, то
*endptr повертається як покажчик на символ, при досягненні
якого припинене читання рядка str

strupr char *strupr (char *str);
Перетворить літери нижнього регістра в рядку str на літери вер-
хнього регістра

ultoa char *ultoa (unsigned long v, char *str, int baz);
Перетворить беззнакове довге ціле v на рядок str

Лабораторна робота 4. Оброблення символьних даних

Завдання. Скласти програму, що вводить рядок символів, виконує
його оброблення відповідно до таблиці 2.10 та виводить результати.

Таблиця 2.10

Вар. Умова оброблення
1 2
0 Видалити всі символи – цифри
1 Видалити всі символи, що не є цифрами
2 Видалити парні цифри
3 Видалити всі символи від "I" до "N"
4 Видалити всі знаки "+" й "–"
5 Видалити всі літери "X" й "Y"
6 Видалити всі знаки "+", за яких треба цифра
7 Видалити всі літери "В", після яких знаходиться літера "C"
8 Замінити все пари "АВ" на "C"
9 Видалити всі символи, що не є латинськими літерами
10 Видалити знаки "+" й "–"
11 Підрахувати, скільки разів зустрічаються символи "+" й "–"

12
Замінити всі знаки оклику ("!") на символ "*", а символ "крапка"
(".") – крапками (три крапки "...")

13 Знайти позицію (номер першого символу) сполучення "DEV"
14 З'ясувати, чи є в рядку послідовність символів (підрядок) "DEV"

15
Визначити, чи входить до рядка літера "А", і підрахувати кількість
пробілів

16
З'ясувати, чи входить до рядка пара символів, що знаходяться по-
руч, "NO" або "ON"

 97

Продовження таблиці 2.10

1 2

17 З'ясувати, є чи в рядку подвоєні символи (пари однакових символів,
що знаходяться поруч), надрукувати їх

18
З'ясувати, чи є в рядку пари символів, що знаходяться поруч, кома й
двокрапка (", :")

19
Вставити після кожного символу крапки (".") один символ пробілу
("_"), якщо після крапки немає пробілу

20
Послідовності наступних один за одним пробілів замінити одним про-
білом (тобто видалити всі пробіли, що знаходяться безпосередньо за
пробілом)

21
Підрахувати загальну кількість входжень до рядка символів "А", "а",
"В" й "в"

22 Видалити з рядка всі здвоєні, строєні й т.д. символи

23
Знайти позицію (номер символу), у якій знаходиться перша кома, і
номер позиції з останньої коми

24 Видалити всі символи "*", а символи, що не є "*", подвоїти

25
Вставити пробіл після кожного символу "." "," "!" або "?", якщо за ци-
ми символами не знаходиться пробіл (тобто знаходиться будь-який
символ, крім пробілу)

26 Замінити всі крапки (три крапки "...") одними крапками

27
Вставити після кожного символу крапки (".") один символ пробілу
(" "), якщо після крапки немає пробілу

Приклади виконання завдання

1. Визначити, скільки разів у заданому рядку символів зустрічається

словосполучення "SM".

#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
int i,k;
char st[10];
printf(" Уведіть рядок символів:\n");
scanf("%s",st);
printf("\n Вхідний рядок:\n%s\n",st);
k=0;
for (i=0;i<strlen(st)-1;i++) {
if ((*(st+i)=='S')&&(*(st+i+1)=='M')) {k++;}}
printf(" Задане словосполучення зустрілося %i раз\n",k);
getche();
}

 98

2. Видалити із заданого рядка символів усі цифри.

#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
int i,k;
char st[20];
printf(" Уведіть рядок символів:\n");
scanf("%s",st);
printf("\n Вхідний рядок:\n%s\n",st);
i=0;
while (i < strlen(st)) {
 if ((*(st+i)>='0')&&(*(st+i)<='9')) {
 for (k=i;k<=strlen(st);k++) {
 (st+k)=(st+k+1);}} else {i++;}
}
printf(" Результат:\n%s\n",st);
getche();
}

2.5 Складні типи даних

Як й у Паскалі, у Сі, крім масивів, існують типи даних, аналогічні

записам і файлам.
До структурованих типів даних, що складаються з фіксованої кілько-

сті компонентів – полів, у Сі відносяться структури (struct) і об'єднання
(union).

Структура аналогічна запису в Паскалі. Єдине доповнення – можли-
вість використання покажчика на структуру:

ім' я-> поле

Втім, даний вид запису може бути замінений стандартним:

(* ім' я). поле

Правила опису структури зрозумілі на наведеному далі прикладі да-

них про студентів (здобувачів вищої освіти).

 99

struct stud {
char fam[10], gr[10];
int year, rt[5], max;
};

stud ist[3]={{" Іванов","IST-25-1",2008,{70,55,55,60,75}},
 {" Петров","IST-25-2",2008,{61,62,63,74,55}},
 {" Сидоров","IST-25-3",2008,{98,99,97,90,91}}}, s1;

Якщо поля структури розташовуються в пам'яті послідовно, то об'-

єднання – паралельно. З цього випливає, що у структури можуть завжди
бути доступні всі поля, а в об'єднання вони альтернативні. Розмір структу-
ри дорівнює сумі розмірів усіх її полів, розмір об'єднання визначається ма-
ксимальним його полем.

Далі в прикладі описані два практично ідентичних структурованих
типи: структура st1 й об'єднання st2.

struct st1 {

char fm[10];
int m[2];
int k;
};

union st2 {
char fm[10];
int m[2];
int k;
};

Розміщення в оперативній пам'яті набуде вигляду, як показано
на рисунку 2.1. Передбачається, що змінна цілого типу займає в пам'яті
2 байти. Таким чином, розмір структури дорівнюватиме 10+2*2+2=16 байт,
а розмір об'єднання – 10 байт.

Рисунок 2.1 – Розміщення в пам'яті структури й об'єднання

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Структура st1

fm [10] m [2] k
Об'єднання st2

1 2 3 4 5 6 7 8 9 10
fm [10]

m [2]
k

 100

Структури й об'єднання можуть мати так звані бітові поля, тобто по-
ля розміром менше одного байта:

struct st3 {

int k:2;
int m:4;
};

У наведеному прикладі поле з ім'ям k має розмір 2 біти (тобто зможе

набувати значення від 0 до 3), поле з ім'ям m – 4 біти (значення від 0 до
15). Іноді використання бітових полів має сенс.

Файл у мові Сі описується в програмі як покажчик на місце в опера-
тивній пам'яті – буфер обміну з файлом на диску:

FILE *f;

Тут *f – ім'я файлу. Службове слово FILE завжди пишеться велики-

ми літерами.
Відкриття файлу:

ім'я = fopen (ім'я_на_диску, режим);

Тут режим – це літера "r" (читання) або "w" (запис).

Наприклад: f=fopen("lab5.dat","w");

Якщо відкриття файлу пройшло успішно, то файловій змінній при-

власнюється адреса (покажчик) місця в пам'яті, де розмістився буфер обмі-
ну, інакше значення файлової змінної дорівнюватиме NULL.

З файлами можна працювати у двох режимах – текстовому й двійко-
вому, при цьому «включення» режиму відбувається автоматично, за вико-
ристовуваними функціями уведення або виведення. Для перевірки статусу
файлу (поточного режиму) використається убудована змінна _fmode, що
може набувати значення O_TEXT або O_BINARY .

Читання й запис даних у двійковий файл:

fread (адреса_змінної, к_байт, скільки_раз, ім'я_файла);

Наприклад: fread(&k,sizeof(k),1,f);

Запис даних у двійковий файл:

fwrite (адреса_змінної, к_байт, скільки_раз, ім'я_файла);

Наприклад: fwrite(&k,sizeof(k),1,f);

 101

Читання й запис даних у текстовий файл практично не відрізняється
від читання й запису при роботі з екраном:

fscanf (ім'я_файла, формат, список_адрес_змінних);
fprintf (ім'я_файла, формат, список_змінних);

Закриття будь-якого файлу:

fclose(ім'я);

Можливе також потокове уведення й виведення даних (iostream.h):

cin >> ім'я;
cout << вираз;

У таблиці 2.11 наведений перелік функцій для роботи з файлами.

Таблиця 2.11

Функція Прототип і стислий опис дій Файл
1 2 3

сhmod int chmod (const char *path, int mode);
Змінює режим доступу до файлу

io.h

chsize int chsize (int handle, long size);
Змінює розмір файлу

io.h

close int close (int handle);
Закриває файл

io.h

creatnew int creatnew (const char *path, int mode);
Створює новий файл

dos.h

eof int eof (int handle);
Визначає, чи досягнут кінець файлу

io.h

fclose int fclose (FILE *stream);
Закриває потік

stdio.h

fdopen FILE *fdopen (int handle, char *type);
Зв'язує потік з логічним номером файлу

stdio.h

feof int feof (int handle);
Визначає, чи досягнут кінець файлу

stdio.h

ferror int ferror (FILE *stream);
Виявляє помилки в потоці

stdio.h

fgetc int fgetc (FILE *stream);
Одержує символ з потоку

stdio.h

 102

Продовження таблиці 2.11

1 2 3
fgetchar int fgetchar (void);

Одержує символ з потоку stdin
stdio.h

fgetpos int fgetpos (FILE *stream, fpos_t *pos);
Повертає положення покажчика поточної позиції у
файлі

stdio.h

fgets char *fgets (char s, int n, FILE *stream);
Одержує рядок символів з потоку

stdio.h

fopen FILE *fopen (char *filename, char *type);
Відкриває потік

stdio.h

fprintf int fprintf(FILE *stream, const char *format
[argument,...]);
Здійснює форматированный висновок у потік

stdio.h

fputc int fputc (int c, FILE *stream);
Виводить символ у потік

stdio.h

fputchar int fputchar (int c);
Виводить символ у потік stdout

stdio.h

fputs int fputs (char *string, FILE *stream);
Виводить рядок символів у потік

stdio.h

fread size_t fread (void *ptr, size_t size, size_t n, FILE
*stream);
Зчитує дані з потоку

stdio.h

freopen FILE *freopen (char *filename, char *mode, FILE
*stream);
Зв'язує з потоком новий файл

stdio.h

fscanf int fscanf (FILE *stream, char *format [adress,...]);
Виконує форматированный уведення з потоку

stdio.h

fseek int fseek (FILE *stream, long offset, int fromwhere);
Установлює покажчик файла в потоці

stdio.h

fsetpos int fsetpos (FILE *stream, const fpos_t *pos);
Позиціює покажчик поточної позиції у файлі, пов'я-
заному з потоком stream

stdio.h

ftell long ftell (FILE *stream);
Повертає положення покажчика поточної позиції
файлу

stdio.h

fwrite size_t fwrite(void *ptr, size_t size, size_t n, FILE
*stream);
Записує дані в потік

stdio.h

getc int getc (FILE *stream);
Уводить із потоку символ

stdio.h

 103

Продовження таблиці 2.11

1 2 3
getchar int getchar (void);

Уводить символ з потоку stdin
stdio.h

gets char *gets (char *s);
Уводить рядок символів з потоку stdin

stdio.h

getw int getw (FILE *stream);
Уводить із потоку ціле число

stdio.h

lseek long lseek (int handle, long offset, int fromwhere);
Переміщає покажчик читання/запису файлу

io.h

_open int _open (const char *filename, int oflags);
Відкриває файл для читання або запису

fcntl.h

open int open(const char *filename, int access [unsigned
mode]);
Відкриває файл для читання або запису

fcntl.h

putc int putc (int c, FILE *stream);
Виводить символ у потік

stdio.h

putchar int putchar (int c);
Виводить символ у потік stdout

stdio.h

puts int puts (const char *s);
Виводить рядок у потік stdout

stdio.h

putw int putw (int w, FILE *stream);
Поміщає в потік ціле значення

stdio.h

read int read (int handle, void *buf, unsigned len);
Зчитує дані з файлу

io.h

rewind int rewind (FILE *stream);
Установлює покажчик у початок потоку

stdio.h

setmode int setmode (int handle, unsigned amode);
Установлює режим відкриття файлу

fcntl.h

unlink int unlink (const char *filename);
Видаляє файл

io.h

vprintf int vprintf (const char *format, va_list arglist);
Здійснює форматований запис у стандартний потік
stdout

stdarg.h

write int write (int handle, void *buf, unsigned len);
Записує дані у файл

io.h

 104

Лабораторна робота 5. Робота з файлами

Завдання до варіантів 0–8. Сформувати файл із модулів цілих чи-
сел, знайти задану умову для оброблення (табл. 2.12).

Таблиця 2.12

Вар. Умова для оброблення
0 Суму компонентів файлу
1 Кількість парних чисел серед компонентів файлу
2 Кількість непарних чисел серед компонентів файлу
3 Суму квадратів непарних чисел
4 Суму квадратів парних чисел
5 Середнє арифметичне значення компонентів з парними номерами
6 Найбільше зі значень компонентів з парними номерами
7 Найменше зі значень компонентів з непарними номерами
8 Добуток квадратів компонентів файлу

Завдання до варіантів 9–16. Прийнявши, що координати точок

на площині задаються двома числами x та y, скласти програму, що вводить
з клавіатури координати точок і записує їх послідовно у файл: спочатку x,
а потім y. Після завершення уведення переглядається файл і оброблюється
відповідно до таблиці 2.13.

Таблиця 2.13

Вар. Оброблення

9
Підрахувати кількість точок, що потрапляють до кола радіуса 4 із
центром на початку координат

10 Знайти суму відстаней кожної точки від центра координат

11
Підрахувати кількість точок, що потрапляють до прямокутника,
утвореного осями координат і прямими х = 2 й y = 4

12 Знайти середнє відхилення (відстань) точок від осі OX
13 Знайти середнє відхилення (відстань) точок від центра координат

14
Підрахувати кількість точок, що лежать поза колом радіуса 2 і із
центром у точці (2, 2)

15 Знайти середнє відхилення (відстань) точок від осі OY

16
Підрахувати кількість точок, що лежать поза трикутником, утворе-
ним осями координат і прямою y = 2x + 1

 105

Завдання до варіантів 17–27. Сформувати файл із чисел послідов-
ності (–1)k*0.3k/(k + 1). Знайти умову (табл. 2.14).

Таблиця 2.14

Вар. Умова для оброблення
17 Сума компонентів файлу
18 Добуток компонентів файлу
19 Сума квадратів компонентів файлу
20 Модуль суми компонентів файлу
21 Квадрат добутку компонентів файлу
22 Найбільший з компонентів файлу
23 Найбільший з компонентів з непарними номерами
24 Сума найбільшого й найменшого зі значень компонентів файлу
25 Середнє арифметичне модулів компонентів файлу
26 Квадрат максимального з компонентів файлу
27 Квадратний корінь із суми компонентів файлу

Приклад виконання завдання

Сформувати файл із модулів цілих чисел, знайти суму парних ком-

понентів файлу. Виведення результати продублювати у текстовий файл.

#include <stdio.h>
#include <conio.h>
#include <math.h>
int main()
{
FILE *f,*g;
f=fopen("lab5.dat","w"); // запис даних у файл
printf(" Введіть цілі числа, ознака кінця - 0:\n");
int k;
do {

scanf("%i",&k);
if (k!=0)
{fwrite(&k, sizeof (k),1,f);} }

while (k);
fclose(f);
printf(" Зміст файлу:\n"); // читання з файлу
if ((f=fopen("lab5.dat","r"))==NULL)
{

printf(" Помилка при читанні файлу!\n");
return 1;

}
g=fopen("lab5.txt","w");
fprintf(g," Зміст файла:\n");
int s=0;

 106

do {
 fread(&k, sizeof (k),1,f);
 if (!feof(f)) {
 printf("%4i",k);
 fprintf(g,"%4i",k);
 if (!(k%2)) {s+=k;}
 } } while (!feof(f));
printf("\n Сума = %i\n",s);
fprintf(g,"\n Сума = %i\n",s);
fclose(f);
fclose(g);
getche();
}

2.6 Робота препроцесора й виняткові ситуації

Перш ніж програму мовою Сі почне «переглядати» компілятор,

з нею певні дії повинен провести так званий препроцесор. На стадії пре-
процесорного оброблення відбувається видалення коментарів, з'єднання
операторів, розташованих на декількох рядках, в один і т.д. Препроцесор
також здійснює такі дії:

– включення текстів з файлів;
– заміни в тексті програми;
– умовна компіляція;
– макропідстановки.
Усі команди (директиви) препроцесору записуються в окремих ряд-

ках і починаються з символу #:

#ім'я параметри

Параметри записуються, якщо необхідно. Крапки з комами в рядку

директив не наводяться.
Розглянемо кожну групу команд докладніше.
Включення тексту з файлів:

#include <stdio.h>
#include "myprog.cpp"

Подвійні лапки використаються для включення програмних файлів,

розташованих у тій самій теці, що й програма, що викликається. Кутові ла-
пки – для заголовних файлів, розташовуваних, як правило, у спеціальних
теках.

 107

Заміни в тексті:

#define M 20
#define AAA for (int i=0; i < 10; i++)

Перший параметр – що заміняється, другий параметр – чим. Розділь-

ник між параметрами – пробіл. Усі символи праворуч пробілу – рядок-
замінник. Обмежень на кількість замін немає.

Умовна компіляція:

#if умова
#ifdef M
#ifndef M
#elif умова
#else
#endif

Якщо раніше за допомогою define був визначений параметр M, то

блок (до однієї з наступних директив умовної компіляції) включається до
компіляції, інакше – ні. Суть директив зрозуміла з їхніх назв.

Макропідстановки засобами препроцесора:

#define max(a,b) a>b?a:b

Також препроцесор може обробляти убудовані (заздалегідь визначені)

макроімена: __LINE__, __FILE__, __DATE__, __TIME__ й інших.
Внесемо невеликі зміни до одного з попередніх прикладів для обро-

блення рядків:

#include <stdio.h>
#include <conio.h>
#include <string.h>
#define M 1
#define P printf
#define S scanf
#define AAA for (i=0;i<strlen(st)-1;i++) {
int main()
{
 int i,k;
 char st[20];
 clrscr();
 P("Enter string:\n");
 S("%s",st);
 P("String:\n%s\n",st);

 108

 k=0;
#ifdef M
 AAA
 if ((*(st+i)=='S')&&(*(st+i+1)=='M')) {k++;}}
#endif
 P("Result: %i\n",k);
 getche();
}

Якщо в рядку умовної директиви замість «#ifdef M» написати

«#ifdef A», то результат дорівнюватиме нулю.
Оброблення виняткових ситуацій у мові Сі здійснюється за допомо-

гою операторів try, catch й throw:

try
{
оператор1;
оператор2;
…
throw вираз_генерації_виключення;
}
catch (тип_виключення ім'я) {оператори}

Докладно розділи оброблення виняткових ситуацій традиційно роз-

глядаються в розділі об'єктно-орієнтованого програмування.
Для самостійної роботи пропонується вивчити графічну бібліотеку

мови Сі.

2.7 Завдання для самостійної роботи

Побудова графічних зображень у середовищі Cі

З використанням модуля роботи із графікою скласти програму для
малювання на екрані трьох зображень відповідно до варіанта з таблиці 2.15
(наприклад, якщо ваш варіант – № 11, то необхідно намалювати зображен-
ня № 11, 12 й 13).

Зауваження: оскільки не всі сучасні компілятори мови Сі підтри-
мують наведену бібліотеку для роботи із графікою, здобувач за згодою ви-
кладача може змінити завдання на самостійну роботу.

 109

Таблиця 2.15

№ 1, 16 № 2, 17 № 3, 18

№ 4, 19 № 5, 20 № 6, 21

№ 7, 22 № 8, 23 № 9, 24

№ 10, 25 № 11 № 12

№ 13 № 14 № 15

 110

Приклад виконання завдання

Рисунок 2.2

#include <stdio.h>
#include <conio.h>
#include <graphics.h>
void axes(int xc, int yc)
{
line(xc-100,yc,xc+100,yc);
line(xc+100,yc,xc+95,yc-2);
line(xc+100,yc,xc+95,yc+2);
line(xc,yc-100,xc,yc+100);
line(xc,yc-100,xc-2,yc-95);
line(xc,yc-100,xc+2,yc-95);
}
int main()
{
int xc,yc;
initwindow(400,400);
xc=200;yc=200;
axes(xc,yc);
setfillstyle(3,getmaxcolor());
pieslice(xc,yc,0,90,50);
pieslice(xc,yc,270,360,50);
line(xc,yc-50,xc-50,yc);
floodfill(xc-2,yc-2,getmaxcolor());
line(xc-50,yc,xc,yc+50);
floodfill(xc-2,yc+2,getmaxcolor());
getchar();
closegraph();
}

Рисунок 2.3

 111

3 ОСНОВИ ПРОГРАМУВАННЯ МОВОЮ OBJECT PASCAL

3.1 Середовище візуального програмування Lazarus

Lazarus являє собою середовище для швидкісного розроблення дода-

тків (RAD – rapid application development), ядром якого є модифікація
створеної Ніклаусом Віртом мови Паскаль – Object Pascal. На відміну від
свого «процедурно-орієнтованого» попередника Турбо Паскаля, програма
на якому являла собою комп'ютерну реалізацію певного алгоритму, об'єкт-
но-орієнтований Object Pascal дозволяє створювати повноцінні Windows-
програми – по суті сукупності взаємодіючих між собою і користувачем
об'єктів, які постійно очікують виникнення подій та реагують на них так,
як потрібно розробнику.

Головна зручність середовища Lazarus полягає в тому, що розробник
додатку (програма на Object Pascal є Windows-додатком, тому надалі буде-
мо використовувати тільки цей термін) може конструювати його зовнішній
вигляд шляхом додавання або видалення так званих візуальних компонент.
Програміст може зосередитися на вирішенні поставленого завдання, не
відволікаючись на вирішення супутніх проблем (введення і виведення да-
них, вибір, візуалізація результатів тощо).

Зовнішній вигляд і функціональність середовища Lazarus ідентичні
Delphi версій 5–7. Головний недолік Lazarus: на відміну від Delphi, у нього
немає оптимізатора програмного коду, і найпростіший виконуваний файл
може зайняти 15 Мбайт дискового простору.

Різні версії Lazarus не дуже відрізняються одна від одної. Усі при-
клади в цьому посібнику виконані в середовищі Lazarus – 0.9.26.

На відміну від низки поширених Windows-додатків, побудованих
за MDI-принципом (Multiple Document Interface: кілька дочірніх вікон
розташовуються усередині одного великого вікна), середовище
програмування Lazarus, як і Delphi, побудоване за специфікацією SDI (Single
Document Interface: декількох окремо розташованих вікон). Перед початком
роботи краще мінімізувати інші додатки, щоб вони не захаращували робочий
простір. Далі наведені основні складові частини Lazarus (рис. 3.1):

1. Головне вікно: меню і палітра компонент.
2. Інспектор об'єктів.
3. Редактор коду.
4. Дизайнер форм – проєкт майбутнього додатку.
5. Вікно повідомлень.

 112

Рисунок 3.1 – Зовнішній вигляд середовища Lazarus

Загальний принцип створення додатків такий: з Палітри компонент

вибирається потрібний об'єкт і розміщується на Дизайнері форм (перший
раз потрібно клацнути мишкою на об'єкті, а потім – на Дизайнері форм);
вибраний об'єкт з'явиться на формі проєкту, після чого ним можна буде
маніпулювати за допомогою миші (переміщати, змінювати розміри, вида-
ляти). За допомогою інспектора об'єктів можна змінювати практично будь-
яку властивість вибраного об'єкта (колір, напис, розміри, положення то-
що), а також перейти до створення методу-підпрограми, що викликається
як реакція на будь-яку подію (клацання або переміщення миші, натискання
клавіші і т. д.). Текст підпрограми набирається в Редакторі коду.

Розглянемо докладніше кожну із складових частин середовища.
Палітра компонент розташовується в так званому головному (або

верхньому) вікні (рис. 3.2) разом з головним меню і супутнім йому набо-
ром піктограм. Вона використовує посторінкове угруповання об'єктів.
Угорі Палітри знаходиться набір закладок: Standard, Additional, Dialogs
тощо, причому порядок розташування закладок практично ідентичний
своєму Delphi-аналогу.

Рисунок 3.2 – Головне вікно

 113

Дизайнер форм (рис. 3.3) являє собою проєкт вашого майбутнього
додатку: на формі можна розмістити необхідні візуальні компоненти, на-
приклад: текстову мітку, поле введення тексту, кнопку і багато іншого.
Розміщені об'єкти в будь-який момент можна перемістити в інше місце,
видозмінити і навіть видалити.

Рисунок 3.3 – Дизайнер форм

На рисунку 3.4 наведено приклад форми з розміщеними на ній кноп-
кою, текстовою міткою і полем введення. Як правило, написи на компоне-
нтах збігаються з їх іменами, а ті, у свою чергу, утворюються шляхом до-
давання до імені класу порядкового номера об'єкта даного класу на формі.
Усе це можна змінити в Інспекторі об'єктів.

Рисунок 3.4 – Форма з розміщеними компонентами

 114

На відміну від, наприклад, Турбо Паскаля, де вся робота над програ-
мою проходить виключно в процесі редагування її тексту, у Lazarus вікно
редактора (рис. 3.5) – одне з важливих, але, усе ж таки, не найголовніше.
Бо створення будь-якого додатку починається, у першу чергу, з розміщен-
ня компонентів на формі, і тільки потім можна починати написання проце-
дур – методів.

Рисунок 3.5 – Вікно редактора коду

Слід також зауважити ще одну істотну відмінність від Турбо Паска-
ля: проєкт програми створюється автоматично. При розміщенні на формі
чергового об'єкта вся інформація про нього сама дописується в програму.

Розглянемо наш приклад трохи докладніше:

unit Unit1;
{$mode objfpc}{$H+}
interface
uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics, Dia-

logs, StdCtrls;
type
 { TForm1 }
 TForm1 = class(TForm)
 Button1: TButton;

 115

 Edit1: TEdit;
 Label1: TLabel;
 private
 { private declarations }
 public
 { public declarations }
 end;
var
 Form1: TForm1;
implementation
initialization
 {$I unit1.lrs}
end.

Доступна частина програми являє собою модуль з ім'ям Unit1 (як і в
будь-якому середовищі візуального програмування, кожна форма в Lazarus
являє собою окремий модуль). У інтерфейсній частині модуля описується
новий клас – нащадок стандартного класу TForm, а також нові компонен-
ти, які він містить (кнопка, мітка і поле введення тексту):

TForm1 = class(TForm)
 Button1: TButton;
 Edit1: TEdit;
 Label1: TLabel;
end;

Потім створюється змінна – об'єкт Form1 типу TForm1. Реалізаційна
частина модуля поки порожня, ініціалізація передбачає включення коду
з неіснуючого поки файла «unit1.lrs».

Інспектор об'єктів складається з чотирьох сторінок, кожна з яких ві-
діграє свою роль при визначенні властивостей і поведінки даної компонен-
ти. Перша сторінка – це список властивостей (рис. 3.6, а), друга – список
подій (рис. 3.6, б), третя – вибрані властивості та події (рис. 3.6, в), четвер-
та – обмеження. Використовуючи контекстне меню (викликається правою
кнопкою миші) при наведенні на певну властивість або подію, можна до-
дати його в «Вибране» або видалити звідти.

Якщо потрібно змінити що-небудь, пов'язане з певною компонентою,
то зазвичай це робиться саме в Інспекторі об'єктів. Наприклад, можна
змінити напис і розмір компоненти Label1, змінюючи властивості Caption,
Left, Top, Height і Width.

Сторінка подій пов'язана з Редактором; якщо двічі клацнути миш-
кою за значенням якої-небудь події, то відповідний цій події код автомати-
чно запишеться в Редактор, сам Редактор негайно отримає фокус, і ви
відразу ж маєте змогу додати код обробника даної події.

 116

а) б) в)
а – «Властивості»; б – «Події»; в – «Вибране»

Рисунок 3.6 – Інспектор об'єктів

Наприклад, нам потрібно зробити так, щоб після натискання кнопки
введений в поле тексту рядок відобразився в текстовій мітці. Для цього
спочатку зробимо активним вибраний об'єкт: або клацнемо мишею по кно-
пці на формі, або у верхньому віконці вибору інспектора об'єктів виберемо
Button1. Потім на сторінці подій знаходимо подію «клацання» (OnClick)
і два рази клацнемо лівою кнопкою миші по порожньому віконцю право-
руч від нього. У редакторі текстів автоматично з'явиться таке:

procedure TForm1.Button1Click(Sender: TObject);
begin

end;

Все, що нам залишається, – це вписати між begin і end необхідну дію:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Label1.Caption := Edit1.Text
end;

 117

Редактор оснащений зручним інструментом під назвою CodeTools:
якщо при наборі точки після імені об'єкта підвести до неї покажчик миші
і секунду почекати, то спливає меню зі списком усіх доступних властивос-
тей і методів цього об'єкта (рис. 3.7).

Рисунок 3.7 – Список властивостей і методів об'єкта Label

Після запуску на виконання (F9 або «Запуск» в меню) отримаємо
спочатку повідомлення у відповідному вікні «Проєкт успішно зібраний»,
а потім – результат, поданий на рисунку 3.8. Усе, що б ми не ввели до вік-
на тексту, після натискання на кнопку буде скопійовано в текстову мітку.

Рисунок 3.8 – Результат виконання проєкту

Якщо вибрати одразу декілька компонент, то вміст Інспектора об'-

єктів зміниться: він буде показувати тільки ті поля, які є загальними
для об'єктів. Це означає те, що зроблені зміни у властивостях позначаться
не на один, а на всі вибрані об'єкти.

Проєкт додатку містить, як правило, такі файли:
1) головний файл проєкту (LPR);
2) опис середовища проєкту у xml-вигляді (LPI);
3) модуль першої форми (PAS);
4) опис першої форми (LFM);
5) файл ресурсів першої форми (LRS).
Після першого вдалого запуску додатку з'являються ще кілька файлів:
1) виконуваний файл додатка (EXE);
2) параметри компіляції у xml-вигляді (COMPILED);
3) проміжний код проєкту (O);

 118

4) відкомпільований модуль першої форми (PPU);
5) проміжний код модуля першої форми (O).
Таким чином, з проєктом, який містить одну форму, пов'язано 10

файлів. У разі двох і більше форм кількість файлів PAS-LFM-PPU збільшу-
ється відповідно. Виходячи з цього, настійно рекомендується створювати
окремі папки для кожного свого проєкту, навіть невеликого!

При завантаженні і збереженні слід пам'ятати, що ці операції треба
проробляти над головним файлом проєкту (LPR), використовуючи пункти
меню «Відкрити проект» і «Зберегти все».

Докладний розгляд Палітри компонент наведений у навчальному по-
сібнику «Робота в середовищі Lazarus», тому далі буде розглядатися виня-
тково процес програмування в середовищі Lazarus.

3.2 Програмування в середовищі Lazarus

Розроблення програми в середовищі Lazarus є, по суті, розміщенням

на формі (проєкт майбутнього додатка) потрібних компонент і настрою-
вання їх властивостей. Для простого додатка цим можна обмежитися, але
серйозні, т. зв. повнофункціональні додатки, вимагають більш серйозного
підходу. Необхідно знати особливості мови Object Pascal, вміти користува-
тися спеціальною властивістю Canvas, створювати і знищувати компонен-
ти в процесі роботи програми тощо.

Мова програмування Object Pascal є логічним продовженням створе-
ної Ніклаусом Віртом на початку 70-х років XX століття мови Паскаль.
Згідно з одними джерелами, вона створювалась програмістами фірми
Borland саме для першої версії Delphi (1995), інші стверджують, що вона
народжена у надрах Apple у 1986 році (тобто майже за 10 років до появи
візуального програмування). Головною відмінністю «новонародженої» від
своїх предків стало зняття більшості обмежень у програмі. Так, наприклад,
програмісту тепер не треба думати про межу сегмента даних до
64 кілобайт, про максимальний розмір масиву і довжину рядка та багато
іншого – усе це за нього зробить компілятор, що раціонально використовує
доступну оперативну пам'ять. Ще низка нововведень була запозичена
зі створеної Б. Страуструпом мови C++.

Одне з нововведень – «замовчувані» параметри підпрограм. У зви-
чайному Паскалі заголовок процедури має вигляд

Procedure ім'я (список формальних параметрів);

При зверненні до підпрограми список фактичних параметрів має то-

чно відповідати своїм формальним прототипам. Object Pascal, подібно
C++, дозволяє опускати кілька (або навіть усі) фактичні параметри, при
цьому в заголовку підпрограми мають бути вказані їх значення за замовчу-
ванням:

 119

Procedure vvod (var a: mas; n: integer=10);

Якщо тепер десь у програмі звернутися до підпрограми як vvod (a),

то за замовчуванням буде введений масив з 10 елементів. У наведеному
нижче прикладі (рис. 3.9) розглядаються два масиви: в одному заповню-
ються 5 елементів, у другому – усі 10 (за замовчуванням).

type mas=array[1..10] of integer;
var m1,m2:mas;
Procedure vvod (var a: mas; n: integer=10);
var i:integer;
begin
 for i:=1 to n do a[i]:=random(100)
end;
Procedure TForm1.Button1Click(Sender: TObject);
var i:integer;
begin
 vvod(m1,5);
 Memo1.Lines.Clear;
 for i:=1 to 10 do Memo1.Lines.Add(IntToStr(i)+'='+IntToStr(m1[i]));
 vvod(m2);
 Memo2.Lines.Clear;
 for i:=1 to 10 do Memo2.Lines.Add(IntToStr(i)+'='+IntToStr(m2[i]))
end;

 а) б)

а – дизайн, б – робота

Рисунок 3.9 – Уведення і виведення двох масивів

 120

Відкритий масив являє собою формальний параметр підпрограми,
що описує базовий тип елементів масиву, але не визначає його розмірності
та межі:

Procedure Output (a: array of Integer);

Усередині цієї процедури масив трактується як одномірний з нижнім

індексом, який дорівнює нулю, і верхнім, який повертається функцією
High. Змінимо попередній приклад: нехай два масиви будуть описані як
такі, що мають різний тип даних, а процедура Output зможе виводити зна-
чення заданого масиву в задане Мemo-поле (рис. 3.10).

Рисунок 3.10 – Уведення і виведення двох масивів

Необхідно також трохи відкоригувати процедуру введення.

type mas=array[1..10] of integer;
 mas5=array[1..5] of integer;
var m1:mas5;m2:mas;

Procedure vvod (var a: array of Integer; n: integer=10);
var i:integer;
begin
 for i:=1 to n do a[i-1]:=random(100)
end;

Procedure Output (a: array of Integer; Memo: TMemo);
var i:integer;
begin
 Memo.Lines.Clear;
 For i:=0 to High(a) do

Memo.Lines.Add(IntToStr(i+1)+'='+IntToStr(a[i]))

 121

end;

Procedure TForm1.Button1Click(Sender: TObject);
var i:integer;
begin
 vvod(m1,5);
 Output(m1,Memo1);
 vvod(m2);
 Output(m2,Memo2);
end;

Для передавання двомірних масивів використовуються т. зв. варіан-

тні дані (див. далі). Відкритий масив можна використовувати і незалежно
від підпрограм: довжина такого масиву задається функцією SetLenght (ім'я,
довжина). Зрозуміло, що використання цієї функції повинно передувати
будь-якому зверненню до масиву.

Об'єктна модель, використовувана в Object Pascal, відрізняється
від аналогічної в Turbo Pascal і багато в чому запозичена у C++. Об'єктний
тип тут називається класом (class), а об'єкт являє собою конкретний екзем-
пляр реалізації класу. На відміну від C++, тут не допускається множинне
спадкування, тобто будь-який клас може мати рівно одного попередника.
Не буває класів, які не мають у роді клас TObject, запис MyClass = class
(TObject) ідентичний MyClass = class.

Також у Object Pascal розрізняються поняття поле і властивість.
Полями називаються дані, що містяться в класі, а властивість з'єднує поля
з відповідними методами, які повинні використовуватися при вилученні
з нього даних або запису в нього. Наприклад:

type
MyClass = class

CenterCoord: Integer;
Function GetCenter: Integer;
Procedure SetCenter (V: Integer);
Property Center: Integer read GetCenter write SetCenter;

end;

Тут запис «Center: = 2» автоматично викличе процедуру SetCenter,
а «k: = Center» – функцію GetCenter.

Тип Variant уведений для тих випадків, коли ми не можемо напевно
вирішити, якого типу дані будуть використовуватися у виразі або в якості
параметрів при виклику підпрограм. Після присвоєння полю VType якого-
небудь значення, відмінного від 0 (varEmpty), з варіантною змінною можна
працювати, як зі звичайною змінною певного типу (varString, varInteger
тощо). З практичної точки зору цікаві два шляхи використання варіантів –
для роботи з варіантними масивами і OLE-об'єктами.

 122

Відмітна особливість варіантного масиву (varArray) полягає в тому, що йо-
го елементи можуть мати різний тип даних. У наступному прикладі (рис. 3.11)
створюється одномірний варіантний масив з 4 елементами різних типів:

procedure TForm1.Button1Click(Sender: TObject);
var V:Variant; i:integer;
begin
 V:=VarArrayCreate([0,3],varVariant);
 V[0]:=1; // Цілий
 V[1]:=1.345; // Реальний
 V[2]:='Привет!'; // Рядковий
 V[3]:=True; // Логічний
 Memo1.Lines.Clear;
 for i:=0 to 3 do Memo1.Lines.Add(VarToStr(V[i]));
end;

Рисунок 3.11 – Виведення масиву варіантів

При роботі з варіантними масивами потрібно пам'ятати, що відлік елеме-

нтів починається з нуля. Також не забудьте в списку модулів дописати Variants.
У таблиці 3.1 наведені основні підпрограми для роботи з варіантними масивами.

Таблиця 3.1 – Підпрограми для роботи з варіантними масивами

Підпрограма Виконувана дія
function VarArrayCreate (const Bounds:
array of Integer; VarType: Integer):
Variant;

Створює варіантний масив з елементів типу
VarType з кількістю і межами вимірювань,
що вказуються параметром Bounds

function VarArrayDimCount (const A:
Variant) : Integer;

Повертає розмірність масиву А чи 0, якщо
А – не масив

function VarArrayHighBound (const A:
Variant; Dim: Integer) : Integer;

Повертає верхню межу індексу масиву А
з вимірювання Dim

function VarArrayLowBound (const A:
Variant; Dim: Integer) : Integer;

Повертає нижню межу індексу масиву А
з вимірювання Dim

function VarArrayOf (const Values: ar-
ray of Variant): Variant;

Створює одномірний варіантний масив за
переліком значень, що містяться у відкри-
тому масиві Values. Нижня межа при цьому
дорівнює 0

function VarArrayRedim (var A: Vari-
ant; HighBound: Integer) : Integer;

Змінює верхню межу індексу масиву А
на HighBound

 123

У наступному прикладі ілюструються можливості варіантів для роботи
з OLE-об'єктом Word (обов'язково потрібно в списку модулів дописати
ComObj). Процедура запускає Word і виводить у новий документ вміст Memo-
поля, після чого виводить у це саме поле назву і розмір шрифту (рис. 3.12):

procedure TForm1.ExportToWord1Click(Sender: TObject);
var MsWord:Variant;
begin
 MsWord:=CreateOleObject('Word.Application');
 MSWord.Documents.Open(FileName:='c:\111.doc');
 MSWord.Documents.Add;
 MsWord.Selection.TypeText(UTF8Decode(Memo1.Text));
 Memo1.Lines.Clear;
 Memo1.Lines.Add(MsWord.Selection.Font.Name);
 Memo1.Lines.Add(IntToStr(MsWord.Selection.Font.Size));
end;

а) б)

а – до завантаження, б – після
Рисунок 3.12 – Робота з текстовим процесором

Важливими відмінностями від реалізації цього підходу в середовищі

Delphi є необхідність попереднього відкриття існуючого документа, обов'яз-
кового декодування виведеного тексту (за замовчуванням він зберігається
в кодуванні Unicode) і неможливість присвоєння значень ряду властивостей
(наприклад, назва і розмір шрифту мають статус «тільки для читання»).

На жаль, робота с процесором електронних таблиць Excel у середо-
вищі Lazarus не настільки проста, як у середовищі Delphi. Саме звернення
до Excel відбувається аналогічно попередньому прикладу:

 MsExcel:=CreateOleObject('Excel.Application');
 MsExcel.Workbooks.Open(FileName:='c:\111.xls');

Однак будь-які спроби звернутися до осередків листа безпосередньо,
як рекомендують в довіднику:

MsExcel.Range('A1'):='Hello!';

завжди призводять до виникнення виняткової ситуації. Єдиним виходом
можна вважати поділ завдань: спочатку інформація виводиться у файл

 124

формату XLS, а потім здійснюється завантаження Excel-додатків. Даний
підхід реалізований у вільно поширюваній бібліотеці Fspreadsheet.

Далі наведені часто використовувані процедури і функції для роботи
з рядками і виведення повідомлень.

Function Trim (const S: String): String – повертає рядок з видаленими
провідними пробілами.

Function StrToFloat (St: String): Extended – перетворює рядок симво-
лів St на дійсне число, при цьому рядок не повинен містити ведучих і ве-
дених пробілів.

Function FloatToStr (Value: Extended): String – перетворює дійсне
значення Value на рядок символів.

Function FloatToStrF (Value: Extended; Format: TFloatFormat; Preci-
sion, Digits: Integer): String – перетворює дійсне значення Value на рядок
символів з урахуванням формату Format і параметрів Precision і Digits.

Function StrToInt (St: String): Integer – перетворює рядок символів St
на ціле число, при цьому рядок не повинен містити ведучих і ведених про-
галин.

Function IntToStr (Value: Integer): String – перетворює ціле число
на рядок символів.

Function Format (Format: String; список параметров): String – пере-
творює список параметрів на рядок символів з урахуванням формату
Format (аналог printf в C++), наприклад: Memo1.Lines.Add (Format (’k =
%5i, d = %5.2f’,k,d));

Procedure ShowMessage (const Msg: String) – виводить діалогове ві-
кно з текстом повідомлення.

Function MessageDlg (const Msg: String; DlgType: TMsgDlgType;
Buttons: TMsgDlgButtons; HelpCtx: Longint): Word – виводить діалогове ві-
кно із заданими функціями, наприклад:

If MessageDlg ('Ви дійсно хочете зробити це?', mtConfirmation,
[mbYes,mbNo], 0) = mrYes then begin … end;

MessageDlg(У вас немає прав користуватися цією програмою!', mtEr-
ror, [mbOk], 0);

У Object-Pascal змінені назви деяких функцій і змінних у модулі System:
AssignFile замість Assign;
CloseFile замість Close;
TextFile замість Text;
В іншому робота з файлами не відрізняється від аналогічної у Турбо

Паскалі.
Візуальне проєктування майбутнього додатку досить зручне, проте,

по-перше, часто виникають ситуації, коли заздалегідь невідомі кількість
і розташування деяких компонент, а по-друге, не всі компоненти винесені
на однойменну палітру.

 125

Якщо необхідно в будь-якому місці програми створити компоненту
одного з існуючих класів, це робиться такою послідовністю операторів:

var Ed: TType; // Описуємо змінну
begin

…
Ed := TType.Create (клас-батько); // Створюємо змінну
(* Працюємо зі змінною *)
Ed.Free; // Видаляємо компоненту

end;

У наступному прикладі створюється масив із розташованих послідо-
вно 10 кнопок, при натисканні на кожну з яких напис на ній змінюється
(рис. 3.13, 3.14). Розміри і розташування кнопок розраховуються безпосе-
редньо у процедурі, після чого змінюються розміри самої форми. Зверніть
увагу, що кнопки створюються в момент створення форми (подія Create),
а обробник події необхідно задати «вручну».

var SB:array [0..9] of TSpeedButton;
procedure TForm1.SBClick(Sender: TObject);
begin
 (Sender as TSpeedButton).Caption:='Ok'
end;
procedure TForm1.FormCreate(Sender: TObject);
var i:integer;
begin
 for i:=0 to 9 do begin
 SB[i]:=TSpeedButton.Create(Form1);
 with SB[i] do
 begin
 Parent:=Form1;//Підтверджуємо розташування кнопки на формі
 if i=0 then Left:=1
 else Left:=SB[i-1].Left+SB[i-1].Width; // Зрушуємо нову кнопку
 Top:=1;Width:=50;Height:=50;
 Caption:=IntToStr(i);Font.Size:=12;
 onClick:=@SBClick; // Задаємо реакцію кнопки на натискання
 end;
 end;
 Width:=SB[0].Width*10+2;
 Height:=SB[0].Height+2;
end;
procedure TForm1.FormDestroy(Sender: TObject);
var i:integer;
begin
 for i:=0 to 9 do SB[i].Free
end;

 126

Рисунок 3.13 – Створення кнопок: завантаження форми

Рисунок 3.14 – Створення кнопок: натиснуті кнопки 3 і 7

Абстрактний клас TString містить поля і методи для роботи з набора-

ми рядків. Від нього породжені численні спеціалізовані нащадки, в тому чи-
слі найпоширеніший TStringList. Ця компонента дозволяє вводити, виводи-
ти, сортувати рядки, здійснювати пошук в масиві рядків і багато іншого.

Властивість Count визначає поточну довжину масиву; індекси змі-
нюються від 0 до Count -1. Властивість Text інтерпретує вміст масиву у ви-
гляді одного довгого рядка; властивість CommaText – у вигляді такого са-
мого рядка, але з розподілами типу «Перший рядок», «Другий рядок» то-
що. Властивість Sorted визначає необхідність сортування вмісту в алфавіт-
ному порядку. Функція Find (const S: String; var Index: Integer): Boolean
шукає в масиві рядок S і в разі успіху (True) повертає його Index. Як і бі-
льшість компонент – наборів рядків – StringList може зчитувати інформа-
цію з текстового файлу і записувати в нього.

У наступному прикладі з файлу зчитується деяка інформація, сорту-
ється і записується в інший файл.

procedure TForm1.WorkWithFile;
var S:TStringList;
begin
 S := TStringList.Create;
 if FileExists('input.txt') then begin // Перевірка наявності файлу
 S.LoadFromFile('input.txt'); // Завантажуємо
 S.Sorted := True; // Сортуємо
 S.SaveToFile('output.txt'); // Зберігаємо
 end;
 S.Free // Звільнюємо
end;

 127

До стандартної бібліотеки візуальних компонентів LCL (Lazarus
Component Library) входить декілька об'єктів, за допомогою яких можна
надати своїй програмі абсолютно оригінальний вигляд. Це Image
(DBImage), Shape, Bevel і деякі інші.

Image дозволяє розмістити графічне зображення на будь-якому місці
форми. Тут слід пам'ятати, що зображення, поміщене на форму під час ди-
зайну, додається до EXE-файлу, що збільшує його і без того чималий об'-
єм. У якості одного з можливих рішень проблеми можна здійснювати за-
вантаження картинки під час виконання програми. Для цього у властивості
Picture (яка є об'єктом зі своїм набором властивостей і методів) є спеціаль-
ний метод LoadFromFile. Наприклад:

if OpenDialog1.Execute then
Image1.Picture.LoadFromFile(OpenDialog1.FileName);

Shape – найпростіші графічні об'єкти на формі типу «коло», «квад-
рат» тощо. Вид об'єкта, колір і вигляд меж, колір і вигляд заповнення
об'єкта можна змінювати як під час дизайну, так і під час виконання
програми.

Проте ні Image, ні Shape не надає таких змог і такої свободи творчос-
ті, як спеціальна властивість Canvas (канва), яке надає простого шляху для
малювання на самому об'єкті.

Canvas є, у свою чергу, є об'єктом, що об'єднує у собі поле для ма-
лювання, олівець (Pen), пензлик (Brush) і шрифт (Font). Canvas має також
низку графічних методів: Draw, TextOut, Arc, Rectangle та інші. Викорис-
товуючи Canvas, можна відтворювати на формі будь-які графічні об'єкти –
картинки, багатокутники, текст тощо без використання компонент Image
і Shape, однак при цьому потрібно обробляти подію OnPaint того об'єкта,
на канві якого ми малюємо. Розглянемо докладніше властивості та методи
об'єкта Canvas.

Brush – пензлик, є об'єктом зі своїм набором властивостей:
Bitmap – картинка розміром строго 8x8, використовується для
заповнення (заливання) ділянки на екрані;
Color – колір заливання;
Style – зумовлений стиль заливання; ця властивість конкурує
з Bitmap: яку властивість визначили останньою, та й буде ви-
значати вид заливання;
CopyMode – властивість, яка визначає, яким чином буде відбу-
ватися копіювання (метод CopyRect) на дану канву зображення
з іншого місця: один до одного, з інверсією зображення та ін.

Font – шрифт, яким виводиться текст (метод TextOut).

 128

Pen – олівець, визначає вид ліній; як і пензлик (Brush) є об'єктом
з набором властивостей:

Color – колір лінії;
Mode – режим виводу: проста лінія, з інвертуванням та інші;
Style – стиль виводу: лінія, пунктир та ін;
Width – ширина лінії в пікселях;
PenPos – поточна позиція олівця, олівець рекомендується пе-
реміщати за допомогою методу MoveTo, а не прямою установ-
кою цієї властивості.

Pixels – двомірний масив елементів зображення (пікселів), з його до-
помогою можна отримати доступ до кожної окремої точці зображення
(рис. 3.15).

procedure TForm1.FormPaint(Sender: TObject);
var x,y:integer;
begin
 with Canvas do
 for x:=1 to Width do
 for y:=1 to Height do Pixels[x,y]:=x*y
end;

Рисунок 3.15 – Результат роботи з масивом пікселів

 129

Змінивши формулу, наприклад, помноживши добуток координат
на 100 або 1000, можна отримати абсолютно непередбачувані зображення
(рис. 3.16, 3.17).

Усі методи об'єкта Canvas можна умовно поділити на три категорії.
1. Методи для малювання найпростішої графіки: Arc, Chord, LineTo,

Pie, Polygon, PolyLine, Rectangle, RoundRect та інші. При промальовуванні
ліній в цих методах використовуються олівець (Pen) канви, а для запов-
нення внутрішніх ділянок – пензлик (Brush).

2. Методи для виведення картинок на канву: Draw і StretchDraw; як
параметри вказуються прямокутник і графічний об'єкт для виводу (TBitmap,
TIcon або TMetafile). StretchDraw відрізняється тим, що розтягує або стискає
картинку так, щоб вона заповнила весь зазначений прямокутник.

3. Методи для виведення тексту: TextOut і TextRect. При виведенні
тексту використовується шрифт (Font) канви. При використанні TextRect
текст виводиться тільки всередині зазначеного прямокутника. Довжину
і висоту тексту можна дізнатися за допомогою функцій TextWidth
і TextHeight.

Неповний перелік методів поданий у таблиці 3.2.

Рисунок 3.16 – Результат роботи з масивом пікселів (*100)

 130

Рисунок 3.17 – Результат роботи з масивом пікселів (*1000)

Таблиця 3.2 – Методи класу TCanvas

Метод Назва
1 2

Procedure Arc (X1, Y1, X2,
Y2, X3, Y3, X4, Y4: Inte-
ger);

Креслить дугу еліпса в прямокутнику (X1, Y1) – (X2, Y2).
Початок дуги лежить на перетині еліпса і променя, прове-
деного з його центра до точки (X3, Y3), а кінець – на пере
тині з променем із центра до точки (X4, Y4). Дугу креслить
проти годинникової стрілки

procedure BrushCopy
(const Dest: TRect; Bitmap:
TBitmap; const Source:
Trect; Color: TColor);

Копіює частину зображення Source на ділянку канви Dest.
Сolor вказує колір у Dest, який повинен замінюватися на
колір пензлика канви. Метод введений для сумісності з
ранніми версіями Delphi. Замість нього слід користуватися
класом TImageList

procedure Chord (XI, Yl,
X2, Y2, X3, Y3, X4, Y4:
Integer);

Креслить сегмент еліпса в прямокутнику (X1,Y1)–(X2,Y2).
Початок дуги сегмента лежить на перетині еліпса і променя,
проведеного з його центра до точки (X3, Y3), а кінець – на
перетині з променем із центра до точки (X4, Y4). Дугу сег-
мента креслить проти годинникової стрілки, а початкова та
кінцева точки дуги з'єднуються прямою

procedure CopyRect (Dest:
TRect; Canvas: TCanvas;
Source: TRect);

Копіює зображення Source канви Canvas у ділянку Dest по-
точної канви. При цьому різноманітні спеціальні ефекти до-
сягаються за допомогою властивості СоруМоdе

 131

Продовження таблиці 3.2

1 2
procedure Draw(X, Y: Inte-
ger; Graphic: Tgraphic);

Здійснює промальовування графічного об'єкта Graphic так,
щоб лівий верхній кут об'єкта розташувався в точці (X, Y)

procedure DrawFocusRect
(const Rect: TRect);

Промальовує прямокутник за допомогою операції XOR,
тому повторне промальовування знищує раніше накресле-
ний прямокутник. Використовується, в основному,
для промальовування нестандартних інтерфейсних елемен-
тів при отриманні ними фокусу введення і при втраті його

procedure Ellipse
(X1,Y1,X2,Y2: Integer);

Креслить еліпс у прямокутнику (X1, Y1) – (X2, Y2). Заповнює
внутрішній простір еліпса поточним пензлем

procedure FillRect (const
Rect: TRect);

Заповнює поточним пензлем прямокутну ділянку Rect,
включаючи її ліву та верхню межі, але не зачіпаючи праву
і нижню межі

procedure FloodFill (X, Y:
Integer; Color: TColor;
FillStyle: TfillStyle);

Заливає канву поточним пензлем. Заливання починається з
точки (X, Y) і поширюється в усі сторони від неї. Якщо
FillStyle = fsSurface, заливання поширюється на всі сусідні
точки з кольором Color. Якщо FillStyle = fsBorder, навпаки,
заливання припиняється на точках з цим кольором

procedure FrameRect (const
Rect: TRect);

Окреслює межі прямокутника Rect поточним пензлем тов-
щиною в 1 піксель без заповнення внутрішньої частини
прямокутника.

procedure LineTo(X, Y: In-
teger) ;

Креслить лінію від поточного положення пера до точки
(X, Y)

procedure Lock;
Блокує канву в багатопоточних додатках для запобігання
використанню канви в інших потоках команд.

procedure MoveTo(X, Y:
Integer) ;

Переміщує перо в положення (X, Y) без викреслювання ліній

procedure Pie (X1, Y1, X2,
Y2, X3, Y3, X4, Y4:
LongInt);

Малює сектор еліпса в прямокутнику (X1, Y1) – (X2, Y2).
Початок дуги лежить на перетині еліпса і променя, прове-
деного з його центра до точки (X3, Y3), а кінець – на пере-
тині з променем із центра до точки (X4, Y4). Дугу креслить
проти годинникової стрілки. Початок і кінець дуги з'єдну-
ються прямими з її центром

procedure Polygon (Points:
array of TPoint);

Викреслює пером багатокутник по точках, заданих у масиві
Points. Кінцева точка з'єднується з початковою, і багатоку-
тник заповнюється пензлем. Для креслення без заповнення
використовуйте метод Polyline

procedure Polyline (Points:
array of TPoint);

Викреслює пером ламану лінію по точках, заданих у масиві
Points.

procedure Rectangle (X1,
Y1, X2, Y2: Integer);

Викреслює і заповнює прямокутник (X1, Y1) – (X2, Y2).
Для креслення без заповнення використовуйте FrameRect
або Polyline

procedure Refresh;
Встановлює в канві шрифт, перо і пензлик, прийняті за за-
мовчуванням

procedure RoundRect(X1,
Y1, X2, Y2, Х3, Y3 : Inte-
ger);

Викреслює і заповнює прямокутник (X1, Y1) – (X2, Y2)
з округленими кутами. Прямокутник (X1, Y1) – (X3, Y3)
визначає дугу еліпса для округлення кутів

 132

Продовження таблиці 3.2

1 2
procedure StretchDraw
(const Rect: TRect;
Graphic: TGraphic);

Викреслює і при необхідності масштабує графічний об'єкт
Graphic так, щоб він повністю зайняв прямокутник Rect

function TextExtent (const
Text: String): Tsize;

Повертає ширину і висоту прямокутника, що охоплює тек-
стовий рядок Text

function TextHeight (const
Text : String): Integer;

Повертає висоту прямокутника, що охоплює текстовий ря-
док Text

procedure TextOut(X, Y:
Integer; const Text: String);

Виводить текстовий рядок Text так, щоб лівий верхній кут
прямокутника, що охоплює текст, розташовувався в точці
(X, Y)

procedure TextRect (Rect:
Trect; X, Y: Integer; const
Text : String);

Виводить текстовий рядок Text так, щоб лівий верхній кут
прямокутника, що охоплює текст, розташовувався в точці
(X, Y). Якщо при цьому будь-яка частина напису виходить за
межи прямокутника Rect, вона відсікається і не буде видною

function TextWidth (const
Text: String): Integer;

Повертає ширину прямокутника, що охоплює текстовий
рядок Text

function TryLock: Boolean;
Намагається заблокувати канву. Якщо канву не було бло-
ковано іншим потоком команд, повертає True, в іншому
випадку нічого не робить і повертає False

procedure Unlock; Зменшує на 1 лічильник блокувань канви

На сторінці Additional Палітри компонент є об'єкт PaintBox, який
можна використовувати для побудови додатку типу графічного редактора
або, наприклад, у якості місця побудови графіків. Ніяких ключових влас-
тивостей, крім Canvas, PaintBox не має; власне, цей об'єкт є просто канвою
для малювання. Важливо, що координати покажчика миші, передані до об-
робників відповідних подій (OnMouseMove та інші), є відносними, тобто
це зміщення миші щодо лівого верхнього кута об'єкта TPaintBox, а не від-
носно лівого верхнього кута форми (рис. 3.18).

procedure TForm1.PaintBox1Paint(Sender: TObject);
var x,y: Integer;
begin
 with PaintBox1.Canvas do
 begin
 Brush.Color := clRed;
 Ellipse(0, 0, Width-20, Height-20);
 Font.Name := 'Arial';
 Font.Size := Height div 5;
 Font.Style := [fsBold, fsItalic];
 Font.Color := clWhite;
 X:=(Width - TextWidth('Lazarus')) div 2;
 Y:=(Height - TextHeight('L')) div 2;
 TextOut(X,Y,'Lazarus');
 end;

 133

Рисунок 3.18 – Результат виконання програми

На відміну від Delphi, де низка компонент забезпечена методом Print,

що дозволяє виводити вміст компоненти на принтер, у компонент середо-
вища Lazarus такого методу немає. Для друку необхідно використовувати
системні засоби – скопіювати вміст екрана, обробити його в середовищі
графічного редактора і тільки потім відправляти на принтер. Однак у випа-
дку малювання на канві є можливість вивести малюнок на друк безпосере-
дньо з програми, скориставшись модулем Printers і наявністю в об'єкта
Printer власної канви. Змінимо попередній приклад, додавши до списку мо-
дулів Printers і перенісши роботу з канвою до окремої процедури з переда-
чею канви у вигляді параметра:

procedure Draw(Canvas: TCanvas);
var x,y: Integer;
begin
 with Canvas do begin
 Brush.Color:=clRed;
 Ellipse(0,0,Width-20,Height-20);
 Font.Name:='Arial'; Font.Size:=Height div 5;
 Font.Style:=[fsBold, fsItalic];
 Font.Color:=clWhite;
 X:=(Width - TextWidth('Lazarus')) div 2;
 Y:=(Height - TextHeight('L')) div 2;
 TextOut(X,Y,'Lazarus');
 end;
end;

 134

procedure TForm1.PaintBox1Paint(Sender: TObject);
begin
 Draw(PaintBox1.Canvas)
end;

Додамо новий метод – обробник події кліка мишею по малюнку:

procedure TForm1.PaintBox1Click(Sender: TObject);
begin
 Printer.BeginDoc;
 Draw(Printer.Canvas);
 Printer.EndDoc;
end;

Перший метод відкриває можливість виведення на принтер (тобто
активізує об'єкт «Принтер»), потім здійснюється виведення малюнка
на канву принтера, а останній метод закриває виведення на принтер, здійс-
нюючи власне друк.

Однак слід зауважити, що модуль роботи з принтерами в Lazarus
не такий універсальний, як у Delphi, і вимагає від користувача певної участі
в налаштуванні операційної системи, тому використовувати наведений вище
приклад як єдиний засіб друку зображення не рекомендується.

Залежно від «природи», тобто внутрішнього устрою, властивості по-
діляються на прості, перелічувані і вкладені.

Значеннями простих властивостей є числа або рядки. Наприклад,
властивості Left і Top набувають цілих значень, що визначають положен-
ня лівого верхнього кута компоненти або форми. Властивості Caption
і Name являють собою рядки і визначають заголовок та ім'я компоненти
або форми.

Перелічувані властивості можуть набувати значень з визначеного
набору (списку). Найпростіший приклад – це властивість типу Boolean, яка
може набувати значення True або False.

Вкладені властивості підтримують вкладені значення (або об'єкти);
Інспектор об'єктів зображує знак «+» ліворуч від назви таких властивос-
тей. У свою чергу, поділяються на множини і комбіновані значення.

Множини в Інспекторі об'єктів зображуються у квадратних дуж-
ках (якщо множина порожня, вона відображається як []). Установки
для вкладених властивостей виду «множина» зазвичай мають значення ти-
пу Boolean. Найбільш поширеним прикладом такої властивості є власти-
вість Style з вкладеною множиною булевих значень.

Комбіновані значення відображаються в Інспекторі об'єктів як ко-
лекція деяких величин, кожна зі своїм типом даних. Деякі властивості, на-
приклад Font, для зміни своїх значень мають можливість викликати діало-
гове вікно. Для цього досить клацнути маленьку кнопку з трьома крапками
в правій частині рядка Інспектора об'єктів, що показує дану властивість.

 135

Lazarus дозволяє легко маніпулювати властивостями компонент як в ре-
жимі проєктування (design time), так і в режимі виконання програми (run time).

Відкритість середовища Lazarus дозволяє отримувати і оперувати
інформацією особливого роду, так званою інформацією періоду виконання
(RTTI – run-time type information). Ця інформація є у вигляді декількох рів-
нів: верхнього, середнього і нижнього. Найбільшу практичну цінність має
верхній рівень RTTI, поданий як засіб перевірки та приведення типів з ви-
користаних ключових слів is і as.

Ключове слово is надає програмісту змоги визначити, чи має певний
об'єкт потрібний тип або є одним із спадкоємців даного типу, наприклад,
таким чином:

if MyObject is TSomeObj then ...

Є можливість використовувати RTTI і для процесу приведення об'єк-
тного типу, використовуючи ключове слово as:

if MyObject is TSomeObj then (MyObject as TSomeObj).MyField:=...

або без нього:

TSomeObj(MyObject).MyField:=...

Нижче наводиться приклад практичного використання RTTI (споча-
тку виводиться ім'я компоненти, потім аналізується її тип, і, в разі вияв-
лення кнопки, виводиться напис на кнопці):

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Ім'я: '+(Sender as TComponent).Name);
 if Sender is TButton then
 ShowMessage('Напис: '+(Sender as TButton).Caption);
end;

Список подій для певного об'єкта, на які він реагує, можна побачити

в Інспекторі об'єктів на сторінці подій. Імена (назви) подій, як і імена ме-
тодів, прийнято утворювати відповідно до принципу т. зв. угорської нота-
ції, який дозволяє за іменем будь-якого ідентифікатора визначити його
приналежність. Наприклад, OnClick відповідає одинарному клацанню ми-
ші, OnDblClick – подвійному, а OnKeyUp – події, коли натиснута клавіша
була відпущена.

Увесь набір подій для різних об'єктів з LCL можна умовно поділити
на дві нерівні частини:

– події операційної системи (Click, MouseMove, KeyDown);
– події, породжувані безпосередньо в програмі (Change).
Зрозуміло, що чим складніший додаток, тим більше в ньому оброб-

ників подій другої категорії.

 136

Структурне оброблення виняткових ситуацій – це система, що до-
зволяє програмісту при виникненні помилки (виняткової ситуації) зв'яза-
тися з кодом програми, підготовленим для оброблення такої помилки. Це
виконується за допомогою мовних конструкцій, які як би «охороняють»
фрагмент коду програми і визначають обробники помилок, які будуть ви-
кликатися, якщо щось піде не так у «охоронюваній» ділянці коду. У дано-
му випадку поняття виняткової ситуації відноситься до мови, і не потрібно
його плутати з системними виключними ситуаціями (hardware exceptions),
такими як General Protection Fault. Ці виняткові ситуації зазвичай викорис-
товують переривання і особливий стан «заліза» для оброблення критичної
системної помилки; виняткові ситуації в Lazarus ж незалежні від «заліза»,
не використовують переривань і використовуються для оброблення поми-
лкових станів, з якими підпрограма не готова мати справу.

При традиційному обробленні помилок, помилки, виявлені в про-
цедурі, зазвичай передаються назовні (де було викликано процедуру)
у вигляді значення, що повертається функцією, параметрів або глобаль-
них змінних («прапорців»). Кожна викликана процедура повинна переві-
ряти результат виклику на наявність помилки і виконувати відповідні дії.
Часто це просто вихід ще вище, до вищої процедури, наприклад: функція
A викликає B, B викликає C, C виявляє помилку і повертає код помилки
до B, B перевіряє повернений код, бачить, що виникла помилка, і повер-
тає код помилки до A, A перевіряє повернений код і видає повідомлення
про помилку або вирішує зробити що-небудь ще, якщо перша спроба не
вдалася. Така «пожежна бригада» для оброблення помилок трудомістка,
вимагає написання великої кількості коду, в якому можна легко помили-
тися і який важко налагоджувати.

Структурне оброблення виняткової ситуації заміщає ручне оброб-
лення помилок автоматичною, згенерованою компілятором системою по-
відомлення. У наведеному вище прикладі процедура A встановила б «охо-
рону» зі зв'язаним обробником помилки на фрагмент коду, в якому викли-
кається B. B просто викликає C. Коли C виявляє помилку, то створює
(raise) виняткову ситуацію. Спеціальний код, що був згенерований компі-
лятором і вбудований у Run-Time Library (RTL), починає пошук обробника
даної виняткової ситуації. Якщо один з обробників помилок, які викорис-
товуються в A, підходить за типом для виниклої в C виняткової ситуації,
то програма переходить на його виконання. При цьому виконання B і C
процедур припиняється. Якщо в A немає відповідного обробника, то по-
шук продовжується далі; будь-яка виняткова ситуація, що залишилася
не обробленою, призведе до припинення виконання додатку. Така система
називається структурною, оскільки обробка помилок визначається областю
«захищеного» коду; такі області можуть бути вкладеними.

Модель виняткових ситуацій у Object Pascal є невідновлюваною
(non-resumable). При виникненні виняткової ситуації ми вже не можемо
повернутися до точки, де вона виникла, для продовження виконання про-
грами (це дозволяє зробити поновлювана (resumable) модель).

 137

Розглянемо синтаксис оброблення виняткових ситуацій. Нове клю-
чове слово, додане до мови Object Pascal, – try. Воно використовується для
позначення першої частини, т. зв. захищеної ділянки коду.

Існує два типи захищених ділянок: try .. except і try .. finally. Перший
тип використовується для оброблення виняткових ситуацій. Його синтак-
сис:
try

дія 1;
дія 2;
...
except
on Exception1 do дія1;
on Exception2 do дія2;
...
else
дії; {за замовчуванням – якщо жодна умова не підходить}

end;

Exception тут – ім'я виняткової ситуації (помилки); деякі з них будуть
наведені далі.

Для впевненості в тому, що ресурси, зайняті додатком, звільняться
в будь-якому випадку, можна використовувати конструкцію другого типу.
Код, розташований у частині finally, виконується в будь-якому випадку,
навіть якщо виникає виняткова ситуація. Відповідний синтаксис:
try

дія 1;
дія 2;
...
finally
дії; {вони виконуються завжди}

end;
Нижче наведена довідкова інформація з деяких наперед визначених

винятків.
EConvertError – відбувається при виклику функцій StrToInt

і StrToFloat, коли конвертація рядка в числовий тип неможлива.
EInOutError – відбувається при помилках введення/виведення

при включеній директиві {$ I +}.
EDivByZero – викликається у разі поділу на нуль, як результат

RunTime Error 200.
ERangeError – викликається при спробі звернення до елементів маси-

ву за індексом, що виходить за межі масиву, як результат RunTime Error
201 при включеній директиві {$ R}.

EInvalidGraphic – викликається при спробі передачі в LoadFromFile
файлу несумісного графічного формату.

 138

EInvalidGraphicOperation – викликається при спробі виконання опе-
рацій, що не застосовні для даного графічного формату (наприклад, Resize
для TIcon).

EListError – викликається при зверненні до елемента спадкоємця
TList за індексом, який виходить за межі допустимих значень (наприклад,
об'єкт TStringList містить тільки 10 рядків, а відбувається звернення
до одинадцятого).

EMathError – предок винятків, що трапляються при виконанні будь-
яких операцій з плаваючою точкою.

EZeroDivide – викликається в результаті ділення на нуль.
EMenuError – викликається в разі будь-яких помилок при роботі

з пунктами меню для компонент TMenu, TMenuItem, TPopupMenu
та їх нащадків.

EOutOfMemory – відбувається у випадку викликів New(), GetMem()
або конструкторів класів при неможливості розподілу пам'яті. Відповідає
RunTime Error 203.

EPrinter – викликається у разі будь-яких помилок при роботі з прин-
тером.

EGPFault – викликається, коли відбувається «загальне порушення за-
хисту» – General Protection Fault. Відповідає RunTime Error 216.

EInvalidImage – викликається при спробі читання файлу, що не є ре-
сурсом, або зруйнованого файлу ресурсу.

EReadError – відбувається в тому випадку, коли неможливо прочита-
ти значення властивості або іншого набору байт з потоку (ресурсу).

EFOpenError – викликається, коли потік не може бути відкритим.
EStringListError – відбувається при помилках роботи з об'єктом

TStringList (крім помилок, оброблюваних TListError).
Тут наведені не всі існуючі винятки, проте їх може виявитися цілком

достатньо для створення нормально функціонуючого додатка, який корек-
тно реагує на будь-які неадекватні дії користувача.

У розглянутому далі прикладі (рис. 3.19… 3.21) натисканням на кно-
пку здійснюється складання двох цілих чисел, уведених у поля введення
тексту, і результат з'являється на самій кнопці. Приклад містить обидва
види захищених ділянок коду: перший відповідає за оброблення помилки
переведення рядка в число (видає повідомлення і встановлює фокус вве-
дення в текстове поле), а другий розміщує на кнопці певне повідомлення
(у разі успіху – суму чисел, при невдачі – слово «Error»).

procedure TForm1.Button1Click(Sender: TObject);
var a,b,c:integer;st:string;
begin
 st:='Error!';
 try
 try
 a:=StrToInt(Edit1.Text);

 139

 b:=StrToInt(Edit2.Text);
 c:=a+b; st:=IntToStr(c);
 except
 on EConvertError do
 begin
 MessageDlg('Ви ввели невірні данні!',mtError,[mbOk],0);
 Edit1.SetFocus
 end
 end; //try..except
 finally
 Button1.Caption:=st;
 end; //try..finally
end;

Рисунок 3.19 – Вид додатка на початку роботи

Рисунок 3.20 – Успішне виконання дій

а) б)

а – «Повідомлення»; б – «Вигляд додатка»
Рисунок 3.21 – Помилка введення даних

 140

3.3 Робота з базами даних у середовищі Lazarus

Середовище Lazarus є потужним інструментом для розроблення ін-
формаційних систем, за своїми можливостями перевершує низку існуючих
систем управління базами даних. Поєднання готових компонент для роботи
з базами даних з мовою Object Pascal ставить Lazarus поза конкуренцією.

Компоненти, що використовуються для роботи з базами даних, мож-
на поділити на три групи:

– невізуальні: Dbf, SQLQuery тощо;
– візуальні: DBGrid, DBNavigator, DBEdit тощо;
– сполучні: DataSource.
Перша група включає невізуальні класи, які використовуються

для управління таблицями і запитами. У палітрі компонент ці об'єкти роз-
ташовані на сторінках Data Access і SQLdb.

Друга важлива група класів – візуальні, які показують дані користу-
вачеві і дозволяють йому переглядати і модифікувати їх. Ця група класів
включає компоненти DBGrid, DBNavigator, DBEdit, DBImage,
DBComboBox та інші. У Палітрі компонент ці об'єкти розташовані на сто-
рінці Data Controls.

Є і третій тип, який використовується для того, щоб пов'язати попе-
редні два типи об'єктів. До третього типу відноситься тільки невізуальна
компонента DataSource.

Приблизна схема зв'язку між компонентами наведена на рисунку 4.1.
Тут додаток містить сітку з керуючою панеллю і дві бази даних; з першою
можна працювати за допомогою об'єкта Dbf1 (як встановлено за
замовчуванням), з другою – як Dbf2, так і SQLQuery1. Перемикання між
базами даних відбувається простою установкою властивості DataSet:

DataSource1.DataSet := Dbf2;

або
DataSource1.DataSet := SQLQuery1;

У наведеному вище прикладі до одного DataSource1 можна було до-

дати другий і відразу пов'язати його з Dbf2 або SQLQuery1, а перемикання
візуальних компонент проводити так:

DBGrid1.DataSource:=DataSource2;
DBNavigator1.DataSource:=DataSource2;

Можливі два режими роботи з базами даних: навігаційний і реляцій-
ний. Кожен з них має свої переваги і свої недоліки. Перший (компонента
Dbf) розглядає базу даних як таблицю, по якій можна переміщатися в будь-
які сторони (вперед, назад або по полях одного запису), і використовуєть-
ся, як правило, під час оброблення невеликих баз даних в індивідуальному
режимі.

 141

Рисунок 3.22 – Зв'язок компонент для роботи з базами даних

Під час оброблення великих баз даних навігаційний спосіб демон-
струє вкрай повільну швидкість роботи; в сітьовому режимі цей недолік
посилюється необхідністю контролю над оновленням даних у реальному
часі. Реляційний спосіб (компонента SQLQuery) заснований на викорис-
танні мови структурованих запитів SQL; результатом виконання запиту
буде або яка-небудь зміна в базі даних (додавання запису, видалення, мо-
дифікація тощо), або набір даних, складений із записів, які містяться в базі
даних. На жаль, використання реляційного способу в середовищі Lazarus
пов'язане з необхідністю використання низки додаткових додатків, тому
надалі будемо розглядати тільки навігаційний спосіб роботи з даними та
пов'язані з ним компоненти.

Для роботи з базою даних необхідно, перш за все, помістити під час
дизайну на форму об'єкт Dbf і вказати, з якою таблицею ми хочемо працю-
вати: заповнити в інспектор об'єктів властивості FilePath і TableName.

У FilePath, якщо необхідно, можна вказати папку, у якій знаходяться
таблиці у форматі dBase (наприклад, d:\mywork\mybase). TableName визна-
чає ім'я файла бази даних на диску, наприклад: mybase.dbf.

Принциповою відмінністю середовища Lazarus від Delphi є відсут-
ність можливості встановлювати формат (тип) бази даних. Для кожного
формату необхідно використовувати свою компоненту. Компонента Dbf,
як явно видно з її назви, працює тільки з базами даних відкритого формату
«.dbf». На сторінці Data Access розташовані ще кілька компонент для робо-
ти з іншими форматами, проте формату Paradox («.db») серед них немає.

Якщо база даних уже існує на диску, то можна на етапі дизайну вла-
стивість Active встановити у True, в іншому випадку слід передбачити
кнопку «Відкрити базу даних», з якою пов'язати одну дію:

Dbf1.Active := True;

Dbf1 Dbf 2 Sqlquery1

База даних 1 База даних 2

Додаток
Сітка DBGrid1

Панель DBNavigator1

Зв'язковий DataSource1

 142

Зрозуміло, що закриття бази даних здійснюється в програмі присво-
єнням Active значення False. Зміни значень цих властивостей еквівалентні
викликам методів Open і Close відповідно.

Слід пам'ятати, що багато властивостей компоненти Dbf стають до-
ступними тільки після відкриття бази даних, наприклад: якщо спробувати
звернутися до властивості RecordCount (кількість записів) до переведення
таблиці в активний стан, це призведе до виникнення виняткової ситуації
(помилки).

Крім того, слід бути готовим до ситуації, коли таблиці, створені
в додатках інших середовищ програмування, не зможуть бути прочитані
в додатку, створеному в середовищі Lazarus.

Для «ручного» завдання полів бази даних виберемо в Інспекторі об'-
єктів редагування властивості FieldDefs компоненти Dbf (рис. 3.23).

Рисунок 3.23 – Редактор полів бази даних

Вибір пункту «Додати» призведе до вставки нового поля з ім'ям

Dbf1Field1 і властивостями, приведеними на панелі Інспектора об'єктів
(рис. 3.24).

Задамо такі значення властивостям: Name – «Fam», DataType –
«ftString», Size – «20», faRequired – «True». Аналогічно введемо інші поля:
Name (Ім'я, ftString), GroupName (назва групи, ftString), DR (дата наро-
дження, ftDate), SR (середній рейтинг, ftFloat). Поле faRequired скрізь за-
лишимо зі значенням «False» (тобто всі поля, крім прізвища, можуть тим-
часово бути заповнені).

Для створення dbf-файла можна також скористатися одним з допо-
міжних додатків для роботи з базами даних (Database Desktop) або набрати
дані в Excel-таблиці, а потім вибрати пункт «Зберегти як / dBase III +».
В останньому випадку перший рядок буде списком імен полів, а типи да-
них визначаються автоматично.

 143

а) б)

а) – «Редактор»; б) – «Властивості»
Рисунок 3.24 – Додавання нового поля

Припустимо, що у нас на диску вже існує створена в попередньому
пункті база даних. Обширний набір методів і властивостей DataSet забез-
печують все, що потрібно нам для доступу до будь-якого конкретного за-
пису всередині таблиці:

procedure First;
procedure Last;
procedure Next;
procedure Prior;
property BOF: Boolean read FBOF;
property EOF: Boolean read FEOF;
procedure MoveBy (Distance: Integer);

Дамо короткий огляд їх функціональних можливостей:
– Dbf1.First переміщує поточний покажчик до першого запису таблиці;
– Dbf1.Last переміщує поточний покажчик до останнього запису

таблиці;
– Dbf1.Next переміщує поточний покажчик на один запис вперед;
– Dbf1.Prior переміщує поточний покажчик на один запис назад;
– Dbf1.BOF перевіряє, чи не перебуває поточний покажчик на поча-

тку таблиці;
– Dbf1.EOF перевіряє, чи не перебуває поточний покажчик у кінці

таблиці;
– Dbf1.MoveBy(N) переміщує поточний покажчик на N записів впе-

ред або назад у таблиці. Немає ніякої функціональної відмінності між за-
питом Dbf1.Next і викликом Dbf1.MoveBy (1). Аналогічно, виклик
Dbf1.Prior має той же самий результат, що і виклик Dbf1.MoveBy (–1).

Щоб почати використовувати ці навігаційні методи, потрібно поміс-
тити компоненти Dbf, DataSource і DBGrid на форму, приєднати DBGrid1
до DataSource1, а DataSource1 – до Dbf1. Потім встановити властивості
таблиці:

 144

FilePath – залишити порожнім (за замовчуванням таблиця розташо-
вується в поточному каталозі);

TableName – вписати ім'я (назву) таблиці (наприклад, mybase.dbf).
Переміщатися по таблиці можна як за допомогою клавіш управління

в компоненті DBGrid, так і програмним шляхом. Нижче наводиться при-
клад програми (рис. 3.25…3.27), яка містить всі перелічені вище компоне-
нти, а також дозволяє виконувати навігацію програмним шляхом за допо-
могою низки кнопок.

procedure TForm1.ButtonOpenClick(Sender: TObject);
begin
 Dbf1.FilePath:='';
 Dbf1.TableName:='mybase.dbf';
 Dbf1.Open
end;

procedure TForm1.ButtonCloseClick(Sender: TObject);
begin
 Dbf1.Close
end;

procedure TForm1.ButtonFirstClick(Sender: TObject);
begin
 Dbf1.First
end;

procedure TForm1.ButtonLastClick(Sender: TObject);
begin
 Dbf1.Last
end;

procedure TForm1.ButtonNextClick(Sender: TObject);
begin
 if not Dbf1.EOF then Dbf1.Next
end;
procedure TForm1.ButtonPriorClick(Sender: TObject);
begin
 if not Dbf1.BOF then Dbf1.Prior
end;

Типове навігаційне оброблення бази даних має такий вигляд (перед-
бачається, що набір даних уже відкритий):

Dbf1.First; // Перенеслися на початок таблиці
while not Dbf1.EOF do begin // Поки не дійдемо до кінця

DoSomething; // … щось робимо
Dbf1.Next; // Переходимо на запис вперед

end;

 145

Рисунок 3.25 – Вигляд додатка на этапі дизайну

Рисунок 3.26 – Початок роботи додатка, база даних ще не відкрита

Рисунок 3.27 – Робота додатка після натискання кнопки «Відкрити»

 146

Часто припустима помилка у випадках, подібних цьому: здійснюєть-
ся вхід до циклу while або repeat, але Dbf1.Next пропущений:

while not Dbf1.EOF do begin DoSomething end;

Оскільки немає переходу на наступний запис, нескінченно буде об-

роблятися поточний запис – із циклу можна вийти, тільки вручну перерва-
вши виконання програми.

У більшості випадків, коли нам потрібно отримати доступ з програ-
ми до полів запису, можна використовувати одну з таких властивостей або
методів, що належать DataSet:

property FieldCount;
property Fields[Index: Integer];
function FieldByName(const FieldName: string): TField;

Властивість FieldCount повертає кількість полів до поточної струк-
тури запису. Для доступу до полів використовуються масив Fields і функ-
ція FieldByName. Принципова відмінність між ними полягає в тому, що
Fields шукає потрібне поле за його порядковим номером у структурі даних,
а FieldByName – за його іменем.

У будь-який час роботи програми можна отримати доступ до імен
полів, наприклад: S: = Fields [0]. FieldName присвоює рядку S ім'я першого
поля. Нижче наводиться приклад, у якому всі поля таблиці виводяться
в Memo-поле (рис. 3.28):

procedure TForm1.Button1Click(Sender: TObject);
var i:integer;
begin
 Memo1.Clear;
 for i:=1 to Dbf1.FieldCount do
 Memo1.Lines.Add (Dbf1.Fields[i-1].FieldName)
end;

Якщо потрібно прочитати поточне утримання конкретного поля кон-
кретного запису, то використовуються спеціальні властивості об'єкта Field:

S := Fields[0].AsString;

Властивість Fields (так само, як і метод FieldsByName) дозволяє виб-

рати тип результату, використовуючи такі характеристики:
property AsBoolean
property AsFloat
property AsInteger
property AsString
property AsDateTime

 147

Рисунок 3.28 – Виведення ймен полів

Lazarus може робити перетворення, наприклад, перетворювати поле
Boolean на Integer або Float, або поле Integer на String. Але не буде пере-
творювати String на Integer, хоча і може перетворювати Float на Integer.
Для доступу до полів Date або DateTime можна використовувати AsString
і AsFloat.

Такі методи дозволяють змінити дані, пов'язані з Dbf:

procedure Edit;
procedure Append;
procedure Insert;
procedure Post;
procedure Cancel;
procedure Delete;

Усі ці методи – частина DataSet, вони успадковані і використовують-
ся Dbf і SQLQuery. Кожного разу, коли потрібно змінити дані, потрібно
спочатку перевести DataSet у режим редагування. Більшість візуальних
компонент роблять це автоматично, але в програмі доведеться використо-
вувати перелічені вище функції.

Ось типова послідовність, яку можна використовувати при зміні зна-
чення поля поточного запису:

Dbf1.Edit;
Dbf1.FieldByName('Fam').AsString := 'Шевченко';
Dbf1.Post;

 148

Перший рядок переводить БД у режим редагування. Наступний ря-
док привласнює значення 'Шевченко' полю 'Fam'. Нарешті, дані запису-
ються на диск, коли викликається Post.

Якщо після здійснення редагування з яких-небудь причин воно вияв-
ляється непотрібним, до початкового стану запис повертає метод Cancel
(зрозуміло, якщо не був викликаний метод Post).

Для додавання нового запису до набору даних використовуються ме-
тоди Append і Insert: перший вставляє новий запис після останньої, а дру-
гий – у поточне місце. І той, і інший переводять вставлений порожній за-
пис у режим редагування:

procedure TForm1.ButtonAppendClick(Sender: TObject);
begin

with Dbf1 do begin
Append;
FieldByName('Fam').AsString := 'Шевченко';
FieldByName('Name').AsString := 'Тарас';
FieldByName('GroupName').AsString := 'СМ-15-2';
FieldByName('DR').AsDateTime := StrToDate('12.01.95');
FieldByName('SR').AsFloat := 3.5;
Post
end

end;

Якщо потрібно заборонити додавання або редагування записів, влас-
тивості ReadOnly присвоюється значення True.

При створенні таблиці, як правило, створюються так звані індекси,
що визначають поля для сортування даних. Наприклад, якщо було перед-
бачене сортування за прізвищем або за середнім рейтингом, то для його
реалізації після відкриття (Open) таблиці додається рядок

Dbf1.IndexName:=’IndFam’;
або

Dbf11.IndexName:=’IndSR’;

Дані в таблиці автоматично будуть відсортовані за вибраним полем.
На відміну від середовища Delphi, де для пошуку необхідної інфор-

мації в базі даних існувало два способи (SetKey / GotoKey і Locate),
у Lazarus не реалізовано пошук в індексованій базі даних. Недолік другого
способу – повільна робота, однак тут ми можемо знайти запис, наприклад,
за комбінацією «Прізвище – Дата народження».

Форма визову методу Locate:
Locate('ім'я поля', 'рядок для пошуку', [опції]);

Ось найпростіший приклад його використання:
if not Dbf1.Locate('GroupName', 'СМ-15-3', [loCaseInsensitive]) then
ShowMessage('Групи СМ-15-3 не виявлено!');

 149

Опція loCaseInsensitive передбачає ігнорування різниці між великими
та малими літерами.

Пошук за комбінацією значень має складніший вигляд:

Locate('им’я поля 1; им’я поля 2, …', VarArrayOf (['рядок для пошу-
ку 1', ''рядок для пошуку 2', …]), [опції])

Наприклад:

Dbf1.Locate('Fam;GroupName',VarArrayOf(['Шевченко','СМ-15-2']),[]);

Тут ми намагаємося знайти в групі СМ-15-2 студента (здобувача ви-
щої освіти) на прізвище Шевченко.

У наведеному нижче прикладі показано результат пошуку запису
за комбінацією значень полів «Прізвище» та «Група»:

procedure TForm1.ButtonSearchClick(Sender: TObject);
begin
 if not Dbf1.Locate('Fam;GroupName',
 VarArrayOf([LabeledEdit1.Text,LabeledEdit2.Text]),
 [loCaseInsensitive]) then
 ShowMessage('У групі '+LabeledEdit2.Text+
 ' здобувача на прізвище '+LabeledEdit1.Text+' не знайдено!');
end;

Значення вводяться користувачем за допомогою двох компонент
LabeledEdit, пошук здійснюється без урахування регістра літер. Якщо за-
дана комбінація ніде не зустрічається, видається повідомлення про помил-
ку (рис. 3.29), у разі успіху поточний покажчик переміщається на рядок
зі знайденим записом (рис. 3.30).

Рисунок 3.29 – Повідомлення про помилку

Властивість Filter дозволяє задати обмеження для записів. Слід па-
м'ятати, що фізично записи залишаються в базі даних. У наведеному нижче
прикладі натискання кнопки призведе до того, що доступною залишиться
інформація тільки про тих здобувачів, чиї рейтинги знаходяться в діапазоні
від 4 до 5; натискання другої кнопки означатиме скасування фільтра, тобто
показ на екрані всіх записів цієї бази даних (рис. 3.31).

 150

Рисунок 3.30 – Пошук запису за комбінацією значень полів

procedure TForm1.ButtonFilterOnClick(Sender: TObject);
begin
 with Dbf1 do begin
 Filter:='(SR >= 4) and (SR <= 5)';
 Filtered:=True
 end
end;

procedure TForm1.ButtonFilterOffClick(Sender: TObject);
begin
 with Dbf1 do begin
 Filtered:=False;
 Filter:=''
 end
end;

Будь-яка таблиця, з якою працює наша програма, завжди схильна

до зміни. Навіть, якщо передбачається, що програма не буде працювати
в мережі, завжди існує можливість того, що база даних може мати кілька
шляхів зміни даних до таблиці. Ми повинні бути впевнені, що працюємо
з «останнім» варіантом набору даних. Для цього існує метод Refresh.

 151

Рисунок 3.31 – Фільтрація даних

Проте слід мати на увазі, що оновлення Dbf може іноді призвести

до несподіваних результатів. Наприклад, якщо користувач розглядає запис,
який вже був видалений, то він зникне з екрана в той момент, коли буде
викликаний Refresh. Аналогічно, якщо якийсь інший користувач редагував
дані, то виклик Refresh призведе до динамічної зміни даних. Звичайно, ма-
лоймовірно, що один користувач буде змінювати або видаляти запис у той
час, як інший переглядає його, але це можливо.

Часто буває корисно зазначити поточне місце розташування в табли-
ці так, щоб можна було швидко повернутися до цього місця надалі. Lazarus
забезпечує цю функціональну можливість за допомогою трьох методів, які
використовують поняття закладки:

functon GetBookmark: TBookmark; // встановлює закладку в таблиці
procedure GotoBookmark(Bookmark: TBookmark);//переходить на закладку
procedure FreeBookmark(Bookmark: TBookmark); // звільняє пам'ять

Виклик GetBookmark повертає закладку – змінну типу TBookmark.

Така закладка містить достатню кількість інформації, щоб Lazarus міг
знайти місце розташування, до якого вона належить. Тому можна просто
передавати цю закладку функції GotoBookmark, і поточний покажчик буде
переміщений до запису, пов'язаного з цією закладкою. Необхідно пам'ята-
ти, що виклик GetBookmark виділяє пам'ять для закладки, тому потрібно
викликати FreeBookmark до закінчення роботи програми і перед кожною
спробою повторного використання оголошеної закладки.

 152

У всіх раніше розглянутих випадках передбачалося, що база даних
уже створена або іншим додатком, або нами ж на етапі дизайну програми.
Однак досить часто доводиться перекладати цю роботу «на плечі» про-
грами.

Для створення таблиць компонента Dbf має метод CreateTable, який
може створювати локальні таблиці формату dBase (.dbf). Компонента Dbf,
як правило, розміщується на формі на етапі проєктування програми, а вла-
сне створення таблиць відбувається десь у програмі.

Перед викликом методу CreateTable необхідно встановити значення
таких властивостей:

FilePath – ім'я папки з файлами таблиці
TableName – ім'я таблиці
FieldDefs – масив описів полів
IndexDefs – масив описів індексів
Властивість FieldDefs для існуючої таблиці містить інформацію

про всі поля таблиці. Ця інформація доступна тільки в режимі виконання
і зберігається у вигляді масиву екземплярів класу TFieldDef, що зберігають
дані про фізичні поля таблиці. Кількість полів визначається властивістю
Count, а доступ до елементів масиву здійснюється через властивість Items:

property Items[Index: Integer]: TFieldDef;

При створенні таблиці, перед викликом методу CreateTable, потрібно
сформувати ці елементи. Для цього у класі TFieldDefs є метод Add:

procedure Add(const Name: string; DataType: TFieldType; Size: Word;
Required: Boolean);

Параметр Name, що має тип string, визначає ім'я поля (обов'язково
складається з англійських літер, цифр і не містить ніяких спеціальних сим-
волів). Параметр DataType (тип TFieldType) позначає тип поля. Він може
мати одне з таких значень, зміст яких ясний з їх найменування:

TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord, ftBoo-
lean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes, ftVar-
Bytes, ftBlob, ftMemo, ftGraphic);

Параметр Size (тип word) містить розмір поля. Цей параметр має
сенс лише для полів типу ftString, ftBytes, ftVarBytes, ftBlob, ftMemo,
ftGraphic, розмір яких може сильно варіюватися. Поля інших типів завжди
мають строго фіксований розмір, так що даний параметр для них не бе-
реться до уваги. Четвертий параметр – Required – визначає, чи може поле
мати пусте значення при записі до бази даних. Якщо значення цього пара-
метра є true, то поле є «необхідним», тобто не може мати порожнього зна-
чення. В іншому випадку поле не є «необхідним» і, отже, допускає запис
значення NULL.

 153

Якщо необхідно проіндексувати таблицю за одним або декількома
полями з метою подальшого автоматичного сортування за заданим полем,
використовується метод AddIndex:

procedure AddIndex(const Name, Fields:string; Options:TIndexOptions);

Параметр Name визначає ім'я індексу, параметр Fields визначає імена
поля або полів, які повинні бути індексовані. Складовий індекс, який вико-
ристовує кілька полів, може бути заданий списком імен полів, відокремле-
них крапкою з комою «;», наприклад: 'Field1; Field2; Field4'. Останній па-
раметр – Options – визначає тип індексу. Він може мати набір значень,
описуваних типом TIndexOptions:

TIndexOptions = set of (ixPrimary, ixUnique, ixDescending, ixCaseIn-
sensitive, ixExpression);

ixPrimary позначає первинний ключ, ixUnique – унікальний індекс,
ixDescending – індекс, що передбачає сортування за зменшенням значень
(для рядків – у порядку, зворотному алфавітному), ixCaseInsensitive – ін-
декс, «нечутливий» до регістру літер (для російських слів непридатний),
ixExpression – індекс за висловом. Для застосування останньої опції доста-
тньо в параметрі Fields вказати бажаний вираз, наприклад: 'Field1 * Field2
+ Field3'.

Головна відмінність від Delphi полягає в зміненій послідовності дій:
у Lazarus необхідно спочатку описати поля, потім створити таблицю, від-
крити її, додати всі індекси, а потім застосувати потрібний індекс. Ще одна
важлива особливість: для індексів придатні тільки числові або символьні
поля. Наявний індекс видаляється з таблиці методом DeleteIndex.

Нижче наводиться приклад створення таблиці, з якою ми вже пра-
цювали в багатьох попередніх прикладах:

procedure TForm1.ButtonCreateClick(Sender: TObject);
begin
 with Dbf1 do begin
 FilePath:=''; // у поточній папці
 TableName:='mybase.dbf';
 with FieldDefs do begin
 Clear;
 Add('Fam',ftString,20,true);
 Add('Name',ftString,20,false);
 Add('GroupName',ftString,10,false);
 Add('DR',ftDate,0,false);
 Add('SR',ftFloat,0,false)
 end;{FieldDefs}
 CreateTable;
 Open;
 AddIndex('indFIO','Fam+Name',[ixExpression]);

 154

 AddIndex('indSR','SR',[]);
 IndexName:='indFIO';
 end;
end;

При роботі з базами даних у середовищі Lazarus необхідно пам'ята-

ти, що всі значення полів, введені на кириліці, Lazarus зберігає в кодуванні
UTF8 (Unicode). Це означає:

– при роботі з таблицями, створеними в середовищі Lazarus, в іншо-
му середовищі або системі управління базами даних, необхідно використо-
вувати функції декодування;

– для зберігання кириличних рядків знадобиться рівно в 2 рази біль-
ше пам'яті (місця на диску), тому якщо ми описали поле «Прізвище» роз-
міром 20 байт, то зможемо ввести прізвище українською мовою, що міс-
тить не більше ніж 10 літер.

Візуальна компонента DBGrid призначена для відображення на формі
додатка вмісту зазначеної таблиці бази даних. Для найпростішої роботи
з цією компонентою досить задати властивість DataSource, і при завантаженні
будь-якої таблиці за допомогою відповідної компоненти (наприклад, Dbf) ця
таблиця відразу з'явиться на екрані. Рекомендується також установити опцію
dgEditing у True, а властивості ScrollBars надати значення ssAutoBoth.

Візуальна компонента DBNavigator об'єднує в собі низку кнопок
для навігації по таблиці: вперед, назад тощо. Цю компоненту також необ-
хідно пов'язати з відповідним джерелом даних DataSource.

Наведений далі приклад показує, як можна використовувати інші
можливості компоненти DBGrid. Тут при відкритті бази даних заголовки
таблиці змінюються (рис. 3.32):

procedure TForm1.ButtonOpenClick(Sender: TObject);
var i:integer;
begin
 with Dbf1 do begin
 FilePath:=''; TableName:='mybase.dbf';
 Open;
 DBGrid1.Columns[0].Title.Caption:='Прізвище';
 DBGrid1.Columns[1].Title.Caption:='Ім”я';
 DBGrid1.Columns[2].Title.Caption:='Група';
 DBGrid1.Columns[3].Title.Caption:='Д/н';
 DBGrid1.Columns[4].Title.Caption:='Бал';
 for i:=1 to FieldCount do begin
 DBGrid1.Columns[i-1].Title.Alignment:=taCenter;
 DBGrid1.Columns[i-1].Width:=DBGrid1.Columns[i-1].Width-1 end;
 DBGrid1.TitleFont.Style:=[fsBold];
 end;
end;

 155

Рисунок 3.32 – Змінена таблиця

Кнопки у компоненті DBNavigator означають таке:
− First
− Prior
− Next
− Last
− Insert
− Delete
− Edit
− Post
− Cancel
− Refresh

Усі перелічені назви «спливають» у вигляді підказок при наведенні
покажчика миші на відповідну кнопку; назви цих підказок можуть бути
змінені в масиві Hints. Видимість кожної кнопки визначається компонен-
тою VisibleButtons; якщо потрібно, наприклад, зробити недоступною кноп-
ку «Видалити», записується так:

DBNavigator1.VisibleButtons:=DBNavigator1.VisibleButtons-[nbDelete]

Іноді масиви даних доцільніше зберігати й обробляти в текстовому

файлі у вигляді полів, розділених заздалегідь позначеним символом (ко-
мою, пробілом, крапкою з комою тощо). У Lazarus для таких випадків
є компонента SdfDataSet, значна частина властивостей і методів якої іден-
тичні властивостям і методам компоненти Dbf.

Відмінні властивості:
FileName – ім'я текстового файла;
Delimiter – символ роздільника полей;
FirstLineAsSchema – чи використовувати перший рядок як список

імен полів.

 156

При роботі з російським текстом необхідно пам'ятати, що він збері-
гається в кодуванні UTF-8 (Unicode), і при спробі звернутися до файла
в кодуванні win-1251 або dos-866 такі поля просто не будуть відображати-
ся на візуальних компонентах.

Для наведеного далі прикладу в системному текстовому редакторі
«Блокнот» («AkelPad») був підготовлений текстовий файл, показаний
на рисунку 3.33, і збережений у кодуванні UTF-8 («Зберегти у Unicode»,
Ctrl + Alt + U). Роздільники полів – пробіли, перший рядок являє собою
перелік імен полів.

Рисунок 3.33 – Вхідні дані

Деяким недоліком візуальної компоненти DBGrid при роботі з текс-
товим файлом є відсутність автоматичного розрахунку ширини поля. Це
необхідно зробити в програмі або просто задати ширину полів постійною.
Дизайн форми і робота програми подані на рисунках 3.34, 3.35:

procedure TForm1.ButtonOpenClick(Sender: TObject);
var i:integer;
begin
 with SdfDataSet1 do begin
 if Active then Close;
 FileName:='mydata.txt';
 Delimiter:=#32;
 FirstLineAsSchema:=True;
 Open;
 for i:=1 to FieldCount do begin
 DBGrid1.Columns[i-1].Title.Alignment:=taCenter;
 DBGrid1.Columns[i-1].Width:=100;
 DBGrid1.Columns[i-1].Title.Caption:=Fields[i-1].FieldName
 end;
 end;
 DBGrid1.TitleFont.Style:=[fsBold];
end;

 157

Рисунок 3.34 – Вигляд додатка на етапі дизайну

Рисунок 3.35 – Результат натискання кнопки «Відкрити»

Змінимо у здобувача Петрова середній бал з 4.5 на 4.1 (рис. 3.36), на-
тиснемо спочатку кнопку Post (на панелі DBNavigator), а потім – «Закри-
ти». Усі зміни збережуться в текстовому файлі (рис. 3.37).

Рисунок 3.36 – Змінюємо значення поля

Рисунок 3.37 – Змінений текстовий файл

 158

Лабораторна робота 1. Компоненти середовища візуального
програмування Lazarus

Мета роботи. Вивчити основні сторінки палітри компонент середо-

вища візуального програмування Lazarus.
Завдання до роботи. Створити простий додаток у середовищі візуа-

льного програмування Lazarus. Форма повинна містити три взаємопов'яза-
них компоненти різних сторінок палітри компонент: дві вибираються
з таблиці 5.1 згідно з номером варіанта, третю здобувач підбирає самостій-
но, виходячи з особистих переваг. Для кожної компоненти необхідно на-
писати як мінімум по одному методу, яким ця компонента реагує на виб-
рану подію, при цьому хоча б один метод повинен змінювати стан іншої
компоненти. У звіті про роботу перерахувати список властивостей кожної
компоненти, які піддавалися зміні в процесі роботи програми.

Таблиця 3.3 – Список компонент

Компонента Вар. 1 2
1 MainMenu Memo
2 PopupMenu ToggleBox
3 Button CheckBox
4 Label RadioButton
5 Edit ListBox
6 Memo Shape
7 ToggleBox NoteBook
8 CheckBox LabeledEdit
9 RadioButton Button
10 ListBox StatusBar
11 ComboBox BitBtn
12 ScrollBar Label
13 RadioGroup SpeedButton
14 CheckGroup Image
15 BitBtn Edit
16 SpeedButton ComboBox
17 Image ScrollBar
18 Shape ScrollBox
19 NoteBook CheckListBox
20 LabeledEdit RadioGroup
21 CheckListBox CheckGroup
22 ScrollBox ProgressBar
23 StringGrid PopupMenu
24 TrackBar SpinEdit
25 ProgressBar Timer
26 StatusBar MainMenu
27 SpinEdit ColorBox
28 PageControl StringGrid
29 ColorBox PageControl
30 Timer TrackBar

 159

Приклад виконання роботи

Завдання: використати компоненти Shape, Timer і ProgressBar.
Можливе вирішення: додаток буде являти собою комп'ютерну гру,

у процесі якої гравцеві потрібно клікнути мишею по випадково виникаю-
чим на екрані кулькам (компонента Shape) з фіксованим контролем часу
(компонента Timer) і фіксованою (максимально можливою) кількістю
кульок. За переміщення зображень по екрану відповідає інша компонента
Timer, хід часу і кількість (частку) «спійманих» кульок показують компо-
ненти ProgressBar. Гра закінчується у разі закінчення відведеного на неї
часу чи «упіймання» гравцем заданої кількості кульок.

Використовувані властивості компонент

Компонента Властивості,
що визначаються відразу

Властивості, змінювані
в процесі роботи

Shape1 Shape (stCircle), Width (40),
Height (40)

Top, Left

Timer1 Interval (1000)
Timer2 Interval (1000)
ProgressBar1 Width (по ширині форми) Min, Max, Position
ProgressBar2 Width (по ширині форми) Min, Max, Position

Текст модуля програми наведений далі, вигляд форми і працюючої

програми – на рисунках 3.38…3.40:

unit Unit1;
{$mode objfpc}{$H+}
interface
uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics,

Dialogs, Menus, StdCtrls, Buttons, ExtCtrls, ComCtrls;
type
 { TForm1 }
 TForm1 = class(TForm)
 ProgressBar1: TProgressBar;
 ProgressBar2: TProgressBar;
 Shape1: TShape;
 Timer1: TTimer;
 Timer2: TTimer;
 procedure FormActivate(Sender: TObject);
 procedure Shape1MouseDown(Sender: TObject; Button: TMouseBut-

ton; Shift: TShiftState; X, Y: Integer);
 procedure Timer1Timer(Sender: TObject);
 procedure Timer2Timer(Sender: TObject);
 private

 160

 public
 end;
var
 Form1: TForm1;
implementation
{ TForm1 }
var k:integer; // кількість спійманих кульок

procedure TForm1.FormActivate(Sender: TObject);
// процедура встановлення початкових значень
begin
 with ProgressBar1 do begin
 Min:=0;
 Max:=60; // 1 хвилина на гру
 Position:=0 end;
 with ProgressBar2 do begin
 Min:=0;
 Max:=5; // треба спіймати 5 кульок
 Position:=0 end;
 k:=0;
 randomize; // вмикаємо генератор випадкових чисел
 with Shape1 do begin
 Top:=random(Height-50); // розміщаємо першу кульку
 Left:=random(Width)
 end;
end;

procedure TForm1.Shape1MouseDown(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

// клік по кульці
begin
 k:=k+1;
 with ProgressBar2 do begin
 Position:=k;
 if Position=Max then begin // кінець гри
 ShowMessage('Вітаємо, ви виграли!');
 Close end
 end;
 Shape1.Top:=random(Height-50-Shape1.Height);
 Shape1.Left:=random(Width-Shape1.Width)
end;

procedure TForm1.Timer1Timer(Sender: TObject);
// контроль часу
begin
 with ProgressBar1 do begin
 Position:=Position+1; // секунда пройшла

 161

 if Position=Max then begin // кінець гри
 ShowMessage('Час вичерпано!'); Close
 end
 end
end;

procedure TForm1.Timer2Timer(Sender: TObject);
// переміщення кульки
var nach:integer;
begin
 nach:=random(4); // випадкове число 0..3
 case nach of
 0: begin Shape1.Left:=Shape1.Left+10; // йдемо праворуч
 if Shape1.Left+Shape1.Width >= Width then Shape1.Left:=1
 end;
 1: begin Shape1.Top:=Shape1.Top+10; // йдемо вниз
 if Shape1.Top+Shape1.Height >= Height-50 // ProgressBar
 then Shape1.Top:=1
 end;
 2: begin Shape1.Left:=Shape1.Left-10; // йдемо ліворуч
 if Shape1.Left <= 10 then Shape1.Left:=Width-Shape1.Width-1
 end;
 3: begin Shape1.Top:=Shape1.Top-10; // йдемо вверх
 if Shape1.Top <= 10 then Shape1.Top:=Height-50-Shape1.Height
 end;
 end
end;
initialization
 {$I unit1.lrs}
end.

Рисунок 3.38 – Вигляд додатка на етапі дизайну

 162

Рисунок 3.39 – Вигляд додатка під час роботи

а)

б)

а – «Успіх»; б – «За часом»
Рисунок 3.40 – Повідомлення про закінчення гри

Висновки. Під час лабораторної роботи були вивчені компоненти

Shape, Timer і ProgressBar, їх основні властивості і призначення; був розроб-
лений ігровий додаток, у якому використовувалися розглянуті компоненти.

 163

Лабораторна робота 2. Розроблення простого додатка для
Windows за допомогою засобу розроблення Lazarus

Мета роботи. Отримати навички використання різних компонент

середовища візуального програмування Lazarus для вирішення поставле-
ного завдання.

Завдання до роботи. Створити додаток згідно з індивідуальним за-
вданням (табл. 3.4). Додаток повинен містити базовий набір керуючих
елементів (головне меню, рядок стану тощо).

Таблиця 3.4

Вар. Зміст завдання
1 2

1

Розробити додаток, що здійснює переведення температури в гра-
дусах за Цельсієм у температуру за Фаренгейтом або Кельвіном за
такими залежностями:

Фаренгейт = 32 + (Цельсій / 5) * 9
Кельвін = 273,15 + Цельсій

2

Розробити додаток, який здійснює введення 6 значень і знахо-
дження або середнього арифметичного, або середнього геометри-
чного значення при натисканні командної кнопки, а також видачу
результату

3

Розробити додаток, який здійснює введення 5 значень і знахо-
дження математичного очікування, або середньоквадратичного
відхилення, або дисперсії при натисканні командної кнопки, а та-
кож видачу результату

4
Розробити додаток, який здійснює введення 7 значень і знахо-
дження мінімального чи максимального з них при натисканні кно-
пки, а також видачу результату

5
Розробити додаток, який здійснює введення значень матриці 3х3
(за допомогою вікон введення тексту, розташованих у вигляді ма-
триці) і обчислення її детермінантів

6

Розробити додаток, який здійснює вирішення квадратного рівнян-
ня за введеним користувачем коефіцієнтом. Вікна введення коефі-
цієнтів обов'язково повинні бути доповнені текстовими пояснен-
нями

7
Розробити тестуючу програму, яка пропонує користувачеві два
питання і по три відповіді на кожне з них (тільки одна правильна),
а також виставляє оцінку за результатами тестування

8

Розробити додаток, у якому колір форми (властивість Color) змі-
нювався б при кожному третьому натисканні відповідної кнопки,
при цьому була б можливість цей режим обробки натиснення кно-
пки відключати

 164

Продовження таблиці 3.4

1 2

9

Розробити додаток з вікном, у якому будуть розташовані всі компо-
ненти сторінки «Стандартні». При наведенні на кожну з компонент
покажчика миші повинна з'являтися підказка (властивість Hint
при встановленій властивості ShowHint: = True) з описом можливос-
тей компоненти. При цьому повинна бути передбачена можливість
перемикання режиму показу підказок (короткі/повні)

10
Розробити додаток з вікном, у якому будуть розташовані всі компо-
ненти сторінки «Додаткові». Робота програми повинна здійснювати-
ся подібно попередньому варіанту

11
Розробити додаток з вікном, у якому будуть розташовані всі компо-
ненти сторінки «Dialogs». Робота програми повинна здійснюватися
подібно попередньому варіанту

12
Розробити додаток – електронний калькулятор для операцій +, -, *, /
над числами

13

Розробити додаток, який здійснює піднесення до степеня числа.
При цьому користувач повинен мати змогу ввести число, яке буде
підноситися до степеня, і значення степеня, а програма повинна
здійснювати перевірку символів, що вводять, і переведення негатив-
ного значення степеня на позитивне

14

Розробити додаток, у якому колір форми змінюється за допомогою
трьох смуг прокрутки (компоненти ScrollBar) для кожного базового
кольору – червоного, зеленого і синього. Отримані за допомогою
смуг прокрутки числові значення повинні бути перетворені на зна-
чення кольору (за допомогою функції RGB), яке привласнюється
властивості Color

15
Розробити додаток, який заповнює випадковими числами у випадко-
вому порядку матрицю (4х4) полів введення тексту і очищає їх шля-
хом натиснення відповідної кнопки

16

Розробити «Ігровий автомат», який генерує випадковим чином ви-
грашне число і порівнює його з уведеним користувачем числом; за
результатами порівняння автомат повинен призначити розмір ви-
грашу і повідомити про це користувачеві

17

Розробити додаток – шифрувальник текстів, який за заданим вами
законом або переставляє місцями символи введеного користувачем
тексту, або замінює одні символи в початковому тексті на інші, і ві-
дображає зашифрований варіант користувальницького тексту

18
Розробити додаток – емулятор пристрою зв'язку з можливістю набо-
ру телефонного номера з перевіркою формату уведених даних і за-
значенням користувачеві помилок при введенні

 165

Продовження таблиці 3.4

1 2

19

Розробити довідкову систему, яка видає у вікно виведення тексту
інформацію щодо чотирьох операторів мови програмування Паскаль.
Вибір інформації, що відображається, здійснити за допомогою зале-
жних або незалежних перемикачів

20

Розробити довідкову систему, яка видає у вікно виведення тексту ін-
формацію щодо чотирьох команд інтерфейсу засобу розробки
Lazarus. Вибір інформації, що відображається, здійснити
за допомогою залежних або незалежних перемикачів

21

Розробити додаток-гру під назвою «Сапер», яка зажадає від користу-
вача включення масиву незалежних перемикачів таким чином, щоб
не включити один або кілька перемикачів, що символізують міни.
Інформація про близькість міни при включенні чергового перемика-
ча повинна видаватися користувачеві

22
Розробити додаток – електронний калькулятор, який використовує
тригонометричні функції

23

Розробити додаток для гри в хрестики-нулики двома гравцями. Для
цього розставте CheckBox у вигляді матриці 3х3 для кожного гравця
і надайте змоги вибору поточного гравця за допомогою залежного
перемикача. Програма повинна видати результат гри

24 Розробити додаток – гру «Морський бій» (спрощена версія)

25
Розробити додаток для побудови гістограм (стовпчастих діаграм) за
допомогою компоненти Chart. Дані повинні вводитися з текстового
файла і відображатися за допомогою компоненти StringGrid

26
Розробити додаток для побудови гістограм (стовпчастих діаграм) за
допомогою методів виведення прямокутників на канву. Дані повинні
вводитися користувачем за допомогою компоненти StringGrid

27
Розробити додаток для побудови графіка заданої функції
за допомогою компоненти Chart. Дані повинні вводитися з текстово-
го файла і відображатися за допомогою компоненти StringGrid

28
Розробити додаток для побудови графіка заданої функції
за допомогою методів малювання ліній на канві. Дані повинні вво-
дитися користувачем за допомогою компоненти StringGrid

29

Розробити додаток, який забезпечений максимально можливою кількі-
стю компонент для вибору властивостей форми (наприклад, компонен-
та ColorBox дозволить змінювати колір форми, у полі введення тексту
можна буде ввести заголовок форми тощо)

30
Розробити додаток, яке здійснює пошук екстремальних значень заданої
функції на заданому інтервалі одним з відомих методів оптимізації.
Передбачити висновок усієї проміжної інформації

 166

Приклад виконання завдання

Завдання. Оснастити гру, яку було розроблено під час попередньої
роботи, нормальним інтерфейсом користувача.

Опис вирішення. Перемістимо ігрове поле на окрему панель, додамо
головне меню, статусний рядок і кнопки для управління, забезпечимо мо-
жливість зміни параметрів і їх збереження в текстовому файлі, а також
збереження результатів гри на диску, встановимо контроль над можливіс-
тю зміни розмірів вікна.

Текст програми наведено нижче, екранні форми на етапі дизайну
і роботи програми – на рисунках 3.41…3.49:

unit Unit1;
{$mode objfpc}{$H+}
interface
uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics, Dialogs,
 Menus, StdCtrls, Buttons, ExtCtrls, ComCtrls, Grids;
type
 { TForm1 }
 TForm1 = class(TForm)
 MainMenu1: TMainMenu;
 MenuItem4: TMenuItem;
 MenuItem1: TMenuItem;
 MenuItem2: TMenuItem;
 MenuItem3: TMenuItem;
 MenuItem5: TMenuItem;
 MenuItem6: TMenuItem;
 MenuItem7: TMenuItem;
 Notebook1: TNotebook;
 Page1: TPage;
 Page2: TPage;
 Page3: TPage;
 Panel1: TPanel;
 ProgressBar1: TProgressBar;
 ProgressBar2: TProgressBar;
 Shape1: TShape;
 StatusBar1: TStatusBar;
 StringGrid1: TStringGrid;
 StringGrid2: TStringGrid;
 Timer1: TTimer;
 Timer2: TTimer;
 ToolBar1: TToolBar;
 ToolButton1: TToolButton;
 ToolButton2: TToolButton;
 ToolButton3: TToolButton;

 167

 ToolButton4: TToolButton;
 procedure FormActivate(Sender: TObject);
 procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
 procedure FormCreate(Sender: TObject);
 procedure FormResize(Sender: TObject);
 procedure MenuItem1Click(Sender: TObject);
 procedure MenuItem2Click(Sender: TObject);
 procedure MenuItem3Click(Sender: TObject);
 procedure MenuItem5Click(Sender: TObject);
 procedure MenuItem6Click(Sender: TObject);
 procedure MenuItem7Click(Sender: TObject);
 procedure Shape1MouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure Timer1Timer(Sender: TObject);
 procedure Timer2Timer(Sender: TObject);
 private
 { private declarations }
 public
 { public declarations }
 end;
var
 Form1: TForm1;

implementation
{ TForm1 }
var k:integer; // кількість спійманих кульок
procedure TForm1.FormCreate(Sender: TObject);
// установка початкових значень
var S:TStringList;st:string;
 i:integer;
begin
 randomize; // вмикаємо генератор випадкових чисел
 with StringGrid1 do begin
 ColWidths[1]:=60;ColWidths[0]:=260;
 Cells[0,0]:=' Параметр';
 Cells[1,0]:='Значення';
 Cells[0,1]:='Час на одну гру (секунд)';
 Cells[1,1]:='60';
 Cells[0,2]:='Скількі кульок треба спіймати';
 Cells[1,2]:='5';
 Cells[0,3]:='Затримка переміщення кульки (міллісекунд)';
 Cells[1,3]:='500';
 Cells[0,4]:='Им’я гравця';
 Cells[1,4]:='Admin';
 end;

 168

 if FileExists('params.dat') then begin
 S:=TStringList.Create;
 S.LoadFromFile('params.dat');
 for i:=1 to 4 do StringGrid1.Cells[1,i]:=S[i-1];
 S.Free
 end;
 with StringGrid2 do begin
 Cells[0,0]:=' Дата і час';
 Cells[1,0]:=' Гравець';
 Cells[2,0]:=' Бали';
 end;
 if FileExists('gamers.dat') then begin
 S:=TStringList.Create;
 S.LoadFromFile('gamers.dat');
 StringGrid2.RowCount:=S.Count+1;
 for i:=1 to S.Count do begin
 st:=S[i-1];
 StringGrid2.Cells[0,i]:=copy(st,1,pos('//',st)-1);
 delete(st,1,pos('//',st)+1);
 StringGrid2.Cells[1,i]:=copy(st,1,pos('//',st)-1);
 delete(st,1,pos('//',st)+1);
 StringGrid2.Cells[2,i]:=st
 end;
 S.Free
 end;
 StatusBar1.Panels[0].Text:='Додаток працює'
end;
procedure TForm1.FormActivate(Sender: TObject);
// процедура встановлення початкових значень
begin
 with ProgressBar1 do begin
 Min:=0;
 Max:=StrToInt(StringGrid1.Cells[1,1]);
 Position:=0 end;
 with ProgressBar2 do begin
 Min:=0;
 Max:=StrToInt(StringGrid1.Cells[1,2]);
 Position:=0 end;
 Timer2.Interval:=StrToInt(StringGrid1.Cells[1,3]);
 k:=0;
 with Shape1 do begin
 Top:=random(Panel1.Height-Height); // розміщюємо першу кульку
 Left:=random(Panel1.Width-Width)
 end;
end;

 169

procedure TForm1.FormClose(Sender: TObject; var CloseAction:
TCloseAction);
// зберігаємо параметри
var S:TStringList;
 i,j:integer;
begin
 S:=TStringList.Create;
 S.Clear;
 for i:=1 to 4 do S.Add(StringGrid1.Cells[1,i]);
 S.SaveToFile('params.dat');
 S.Clear;
 for i:=1 to StringGrid2.RowCount-1 do
 S.Add(StringGrid2.Cells[0,i]+'//'+
 StringGrid2.Cells[1,i]+'//'+StringGrid2.Cells[2,i]);
 if S.Count > 0 then S.SaveToFile('gamers.dat');
 S.Free
end;
procedure TForm1.FormResize(Sender: TObject);
// зміна розмірів форми
begin
 Notebook1.Left:=0;
 Notebook1.Top:=ToolBar1.Height+1;
 Notebook1.Width:=Width-1;
 Notebook1.Height:=Height-Notebook1.Top-StatusBar1.Height-21;
 ProgressBar2.Top:=Notebook1.Height-ProgressBar2.Height-26;
 ProgressBar1.Top:=ProgressBar2.Top-ProgressBar1.Height-2;
 ProgressBar2.Left:=1;ProgressBar2.Width:=Notebook1.Width-2;
 ProgressBar1.Left:=1;ProgressBar1.Width:=Notebook1.Width-2;
 Panel1.Left:=1;
 Panel1.Width:=Notebook1.Width-2;
 Panel1.Top:=1;
 Panel1.Height:=ProgressBar1.Top-Panel1.Top-1;
 StringGrid2.Left:=1;
 StringGrid2.Top:=1;
 StringGrid2.Height:=Notebook1.Height-22;
end;
procedure TForm1.MenuItem1Click(Sender: TObject);
// розпочати гру
begin
 FormActivate(Sender);
 Notebook1.PageIndex:=0;
 Timer1.Enabled:=True;
 Timer2.Enabled:=True;
 StatusBar1.Panels[0].Text:='Гра'
end;

 170

procedure TForm1.MenuItem2Click(Sender: TObject);
// перервати гру
begin
 Timer1.Enabled:=False;
 Timer2.Enabled:=False;
 ProgressBar1.Position:=0;
 ProgressBar2.Position:=0;
 StatusBar1.Panels[0].Text:='Гру перервано';
 ShowMessage('Гру перервано з ініціативи гравця!')
end;

procedure TForm1.MenuItem3Click(Sender: TObject);
// закінчити роботу додатку
begin
 Close
end;

procedure TForm1.MenuItem5Click(Sender: TObject);
// про програму
begin
 ShowMessage('Гра "влуч по м'ячу"'+#13#13+
 'Автор: здобувач групи СМ-15-5 Шевченко Тарас Григорович')
end;

procedure TForm1.MenuItem6Click(Sender: TObject);
// змінити параметри
begin
 Notebook1.PageIndex:=1;
end;

procedure TForm1.MenuItem7Click(Sender: TObject);
// список гравців
begin
 Notebook1.PageIndex:=2;
end;

procedure TForm1.Shape1MouseDown(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);
// натискання мишею по колу
begin
 if StatusBar1.Panels[0].Text <> 'Игра' then exit;
 k:=k+1;
 with ProgressBar2 do begin
 Position:=k;

 171

 if Position=Max then begin // кінець гри
 Timer1.Enabled:=False;
 Timer2.Enabled:=False;
 with StringGrid2 do begin
 RowCount:=RowCount+1;
 Cells[0,RowCount-1]:=DateTimeToStr(Now);
 Cells[1,RowCount-1]:=StringGrid1.Cells[1,4];
 Cells[2,RowCount-1]:=IntToStr(k)+' circles / '+
 IntToStr(ProgressBar1.Position)+' seconds'
 end;
 ShowMessage('Поздоровляємо, ви виграли!');
 StatusBar1.Panels[0].Text:='Гру завершено перемогою гравця';
 Notebook1.PageIndex:=2;
 end
 end;
 Shape1.Top:=random(Panel1.Height-Shape1.Height);
 Shape1.Left:=random(Panel1.Width-Shape1.Width)
end;

procedure TForm1.Timer1Timer(Sender: TObject);
// контроль часуу
begin
 with ProgressBar1 do begin
 Position:=Position+1; // секунда пройшла
 if Position=Max then begin // кінець гри
 Timer1.Enabled:=False;
 Timer2.Enabled:=False;
 ShowMessage('Час вичерпано!');
 StatusBar1.Panels[0].Text:='Гру завершено після закінчення часу';
 end
 end
end;

procedure TForm1.Timer2Timer(Sender: TObject);
// переміщення кульки
var nach:integer;
begin
 nach:=random(4); // випадкове число 0..3
 case nach of
 0: begin
 Shape1.Left:=Shape1.Left+10; // йдемо праворуч
 if Shape1.Left+Shape1.Width >= Panel1.Width then Shape1.Left:=1
 end;
 1: begin
 Shape1.Top:=Shape1.Top+10; // йдемо вниз

 172

 if Shape1.Top+Shape1.Height >= Panel1.Height-50 // ProgressBar
 then Shape1.Top:=1
 end;
 2: begin
 Shape1.Left:=Shape1.Left-10; // йдемо ліворуч
 if Shape1.Left <= 10 then Shape1.Left:=Panel1.Width-Shape1.Width-1
 end;
 3: begin
 Shape1.Top:=Shape1.Top-10; // йдемо верх
 if Shape1.Top <= 10 then Shape1.Top:=Panel1.Height-Shape1.Height
 end;
 end
end;

initialization
 {$I unit1.lrs}

end.

Рисунок 3.41 – Вигляд додатка на етапі дизайну («Ігрове поле»)

 173

Рисунок 3.42 – Вигляд додатка на етапі дизайну («Параметри»)

Рисунок 3.43 – Вигляд додатка на етапі дизайну («Гравці»)

 174

Рисунок 3.44 – Вигляд додатка на етапі дизайну (головне меню)

Рисунок 3.45 – Робота додатка: початок

 175

Рисунок 3.46 – Робота додатка: встановлення параметрів

Рисунок 3.47 – Робота додатка: процес гри

 176

Рисунок 3.48 – Робота додатка: перелік гравців і досягнень

Рисунок 3.49 – Робота додатка: пункт меню «Про програму»

Висновки. Під час лабораторної роботи було створено повнофункці-

ональний додаток для Windows – гра «Влуч по м'ячу»; вивчені компоненти
(MainMenu, Notebook, Panel, ProgressBar, Shape, StatusBar, StringGrid,
Timer, ToolBar), їх основні властивості і призначення; створені методи
для оброблення подій FormCreate, FormActivate, FormResize, FormClose,
MenuItemClick, ShapeMouseDown, TimerTimer. Додаток реалізовано
у вигляді однієї форми, багатосторінковий інтерфейс забезпечується ком-
понентою Notebook, що складається з трьох сторінок; вибір користувача
здійснюється за допомогою головного меню і панельних кнопок.

 177

Лабораторна робота 3. Побудова графіків функцій у середовищі
Lazarus

Мета роботи. Отримати навички розроблення додатків, що дозво-

ляють зобразити на екрані таблиці і графіки функцій однієї змінної.
Завдання до роботи. За вказаним літературним джерелом взяти дані

про математичний опис функцій (кривих), виданих у якості індивідуально-
го завдання (табл. 3.5). Розробити додаток, що дозволяє розраховувати
таблицю значень своєї функції (компонента StringGrid) і будувати її графік
(компонента Chart). Передбачити можливість коригування користувачем
інтервалу і кроку зміни аргументу (вводяться у відповідних текстових по-
лях), розрахунку значення функції при заданому значенні аргументу (зада-
вати як явно, так і за допомогою «повзунка»), а також виведення результа-
тів у текстовий файл.

Таблиця 3.5

Вар. Зміст завдання
1 2

1
Лінійна функція; математичний опис, вимоги та обмеження, при-
клад графіків див. на с. 113 [6]

2
Квадратична функція; математичний опис, вимоги та обмеження,
приклад графіків див. на с. 113 [6]

3
Функція третього степеня; математичний опис, вимоги та обме-
ження, приклад графіків див. на с. 113 [6]

4
Степенева функція; математичний опис, вимоги та обмеження,
приклад графіків див. параграф 4 на с. 114, 116, 117 [6]

5
Дрібно-лінійна функція; математичний опис, вимоги та обмежен-
ня, приклад графіків див. на с. 114 [6]

6
Нелінійна дрібно-раціональна функція; математичний опис, вимо-
ги та обмеження, приклад графіків див. на с. 115, п. 1 [6]

7
Нелінійна дрібно-раціональна функція; математичний опис, вимо-
ги та обмеження, приклад графіків див. на с. 115, п. 2 [6]

8
Нелінійна дрібно-раціональна функція; математичний опис, вимо-
ги та обмеження, приклад графіків див. на с. 115, п. 3 [6]

9
Напівкубічна парабола; математичний опис, вимоги та обмежен-
ня, приклад графіків див. на с. 123 [6]

10
Декартов лист; математичний опис, вимоги та обмеження, приклад
графіків див. на с. 123 [6]

11
Цисоїда; математичний опис, вимоги та обмеження, приклад гра-
фіків див. на с. 123, 124 [6]

12
Строфоїда; математичний опис, вимоги та обмеження, приклад
графіків див. на с. 124 [6]

 178

Продовження таблиці 3.5

1 2

13
Равлик Паскаля; математичний опис, вимоги та обмеження, приклад
графіків див. на с. 124 [6]

14
Кардіоїда; математичний опис, вимоги та обмеження, приклад гра-
фіків див. на с. 125 [6]

15
Епіциклоїда; математичний опис, вимоги та обмеження, приклад
графіків див. на с. 126 [6]

16
Показова функція; математичний опис, вимоги та обмеження, при-
клад графіків див. на с. 119-120 [6]

17
Логарифмічна функція; математичний опис, вимоги та обмеження,
приклад графіків див. на с. 119-120 [6]

18
Функція гіперболічного синуса; математичний опис, вимоги
та обмеження, приклад графіків див. на с. 121–122 [6]

19
Функція гіперболічного косинуса; математичний опис, вимоги
та обмеження, приклад графіків див. на с. 121–122 [6]

20
Функція гіперболічного тангенса; математичний опис, вимоги
та обмеження, приклад графіків див. на с. 122 [6]

21
Функція гіперболічного котангенса; математичний опис, вимоги
та обмеження, приклад графіків див. на с. 122 [6]

22
Звичайна циклоїда; математичний опис, вимоги та обмеження, при-
клад графіків див. на с. 125-126 [6]

23
Архімедова спіраль; математичний опис, вимоги та обмеження,
приклад графіків див. на с. 128 [6]

24
Гіперболічна спіраль; математичний опис, вимоги та обмеження,
приклад графіків див. на с. 128 [6]

25
Укорочена циклоїда; математичний опис, вимоги та обмеження,
приклад графіків див. на с. 126 [6]

26
Подовжена циклоїда; математичний опис, вимоги та обмеження,
приклад графіків див. на с. 126 [6]

27
Розгортка (евольвента) окружності; математичний опис, вимоги
та обмеження, приклад графіків див. на с. 128, 129 [6]

28
Овали Кассіні; математичний опис, вимоги та обмеження, приклад
графіків див. на с. 125 [6]

29
Лемніската; математичний опис, вимоги та обмеження, приклад
графіків див. на с. 125 [6]

30
Трактриса; математичний опис, вимоги та обмеження, приклад гра-
фіків див. на с. 129 [6]

 179

Приклад виконання завдання

Завдання: розрахувати значення і побудувати графік функції лога-

рифмічної спіралі.
Опис вирішення: функція логарифмічної спіралі задається в поляр-

ній системі координат і має вигляд
ϕρ keA= , ϕ = 0..360°. Якщо k = 0, то

крива перетворюється на коло з радіусом A і центром на початку коорди-
нат. Перетворення значень з полярної системи координат на декартову
здійснюється за формулами:





=
=

ϕρ
ϕρ

sin

cos

y

x

Інтервал і крок функції не задається, кут змінюється від 0 до 360°.
Текст програми наведено нижче, екранні форми на етапі дизайну

і роботи програми – на рисунках 3.50…3.57:

unit Unit1;
{$mode objfpc}{$H+}
interface
uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics,

Dialogs, Grids, ExtCtrls, TAGraph, StdCtrls, taseries, ComCtrls;
type
 { TForm1 }
 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 Chart1: TChart;
 Edit1: TLabeledEdit;
 Edit2: TLabeledEdit;
 StringGrid1: TStringGrid;
 StringGrid2: TStringGrid;
 TrackBar1: TTrackBar;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure Func(fi:real;var x,y:real);
 procedure TrackBar1Change(Sender: TObject);
 end;
var
 Form1: TForm1;
 S:TSerie; a,k:real;
implementation

 180

procedure TForm1.Func(fi:real;var x,y:real);
var po:real;
begin
 po:=a*exp(k*fi);
 x:=po*cos(fi);
 y:=po*sin(fi);
end;
procedure TForm1.TrackBar1Change(Sender: TObject);
var i:integer;
begin
 i:=TrackBar1.Position;
 StringGrid2.Cells[0,0]:=StringGrid1.Cells[0,i+1];
 StringGrid2.Cells[1,0]:=StringGrid1.Cells[1,i+1];
 StringGrid2.Cells[2,0]:=StringGrid1.Cells[2,i+1];
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 with StringGrid1 do begin
 RowCount:=362;ColCount:=3;
 Cells[0,0]:='fi';Cells[1,0]:='X';Cells[2,0]:='Y' end;
 S:=TSerie.Create(Chart1);
 S.ShowLines:=True;
 S.ShowPoints:=False;
 S.SeriesColor:=clBlack;
 Chart1.Title.Text.Text:= 'Логарифмічна спіраль';
 Chart1.Title.Visible:=true;
 Chart1.Series.Clear;
 Chart1.AddSerie(S);
 with TrackBar1 do begin
 Width:=Chart1.Width;
 Min:=0;Max:=360;
 Position:=0
 end
end;
procedure TForm1.Button1Click(Sender: TObject);
// розрахувати значення
var kod,fi:integer;x,y:real;
begin
 val(Edit1.Text,a,kod);
 if (a = 0) or (kod > 0) then begin a:=1;Edit1.Text:='1' end;
 val(Edit2.Text,k,kod);
 if kod > 0 then begin k:=1;Edit2.Text:='1' end;
 x:=0;y:=0;
 with StringGrid1 do
 for fi:=0 to Rowcount-2 do begin

 181

 func(fi/180*pi,x,y);
 Cells[0,fi+1]:=IntToStr(fi);
 Cells[1,fi+1]:=FloatToStr(x);
 Cells[2,fi+1]:=FloatToStr(y)
 end;
 StringGrid1.SetFocus
end;
procedure TForm1.Button2Click(Sender: TObject);
// побудувати график
var i:integer;
begin
 S.Clear;
 with StringGrid1 do for i:=1 to Rowcount-1 do
 S.AddXY(StrToFloat(Cells[1,i]),
 StrToFloat(Cells[2,i]),IntToStr(i),clBlack);
 TrackBar1.Width:=Chart1.Width;
 StringGrid1.SetFocus
end;
initialization
 {$I unit1.lrs}
end.

Рисунок 3.50

 182

Рисунок 3.51

Рисунок 3.52 – Робота додатка: розрахунок значень

 183

Рисунок 3.53 – Робота додатка: побудова графіка для А = 1, k = 2

Рисунок 3.54 – Робота додатка: побудова графіка для А = 1, k =- 2

 184

.

Рисунок 3.55 – Робота додатка: побудова графіка для А =-1, k =- 2

Рисунок 3.56 – Робота додатка: побудова графіка для А =-1, k = 2

 185

Рисунок 3.57 – Робота додатка: побудова графіка для А =1, k = 0

Висновки. Під час лабораторної роботи було створено програму
для побудови графіка функції логарифмічної спіралі. Для цього викорис-
товувалися компоненти Button, LabeledEdit, StringGrid, Chart, TrackBar,
Timer, ToolBar; створені методи для обробки подій FormCreate, FormPaint,
ButtonClick, TrackBarChange. Додаток реалізований у вигляді однієї форми;
вибір користувача здійснюється за допомогою двох стандартних кнопок
і «повзунка».

Лабораторна робота 4. Робота з базами даних у середовищі
Lazarus

Мета роботи. Отримати навички розроблення додатків, що дозво-

ляють створювати й обробляти найпростіші бази даних.
Завдання до роботи. Розробити додаток, який створює базу даних

про здобувачів вищої освіти у такому вигляді:
Прізвище Ім'я По батькові Група Дата_народження R1 R2 R3 R4 R5
(тут R1..R5 – рейтинги з п'яти предметів).
Наприклад: Шевченко Тарас Григорович СМ-15-5 9.09.99 77 75 81 85 92
Два записи повинні створюватися програмою автоматично, ще не ме-

нше п'яти додаються до бази безпосередньо при роботі додатка за допомогою
візуальних компонент. Крім створення бази та візуальної роботи з нею, дода-
ток повинен також надати змоги навігації базою даних. Передбачити індек-
сування (сортування) бази даних за своїм варіантом (табл. 3.6) та її оброб-
лення (табл. 3.7), а також фільтрацію даних (табл. 3.8).

 186

Таблиця 3.6

Варіант Поле для сортування
1..5 Прізвище
6..10 Ім'я
11.15 Група
16..20 Дата народження
21..25 R1
26..30 R5

Таблиця 3.7

Варіант Умова для оброблення
1,6,11,16,

21,26
Додати нове поле – максимальний рейтинг RS з усіх пред-
метів; розрахувати його для кожного здобувача

2,7,12,17,
22,27

Додати нове поле – мінімальний рейтинг RS з усіх предме-
тів; розрахувати його для кожного здобувача

3,8,13,18,
23,28

Додати нове поле – середній рейтинг RS з усіх предметів;
розрахувати його для кожного здобувача

4,9,14,19,
24,29

Додати нове поле – рік народження; розрахувати його для
кожного здобувача шляхом аналізування поля «Дата наро-
дження»

5,10,15,20,
25,30

Додати нове поле – місяць народження; розрахувати його
для кожного здобувача шляхом аналізування поля «Дата
народження»

Таблиця 3.8

Вар. Умова для фільтрації даних
1 2
1 Прізвища починаються з літер «А» – «К»
2 Народились пізніше 1995 року
3 Імена починаються з літер «А» – «К»
4 Мають хоча б один рейтинг «100»
5 Народились раніше 1995 року
6 Імена починаються з літер «Л» – «Я»
7 Навчаються в групах «СМ»
8 Не мають жодного рейтингу вище 89 балів
9 Вступили до вишу в 2011 році
10 Народились пізніше 1993 року
11 Не навчаються в групах «СМ»
12 Вступили до вишу не у 2011 році
13 Не мають жодного рейтингу нижче 75 балів
14 Прізвища починаються з літер «Л» – «Я»

 187

Продовження таблиці 3.8

1 2
15 Не мають жодного рейтингу нижче 90 балів
17 По батькові починаються з літер «А» – «К»
18 Не мають жодного рейтингу понад 74 бали
19 По батькові починаються з літер «Л» – «Я»
20 Народились раніше 1993 року

21, 26 Мають хоча б один рейтинг нижче 75 балів
22, 27 Розрахований рейтинг RS понад 95 балів
23, 28 Розрахований рейтинг RS нижче 75 балів
24, 29 Розрахований рейтинг RS понад 74 бали
25, 30 Рік народження – 1999

Приклад виконання завдання

Завдання. Розробити додаток, який здійснює роботу з базою даних
формату, що описаний вище, передбачивши індексування за прізвищем
та ім’ям здобувача. Додати нове поле – середній рейтинг RS з усіх предме-
тів; розрахувати його для кожного здобувача. Фільтрувати всіх відмінників
(середній рейтинг не нижче 90 балів).

Текст програми наведено нижче, екранні форми на етапі дизайну
і роботи програми – на рисунках 3.58…3.63:

unit Unit1;
{$mode objfpc}{$H+}
interface
uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics,

Dialogs, StdCtrls, Buttons, ExtCtrls, sqldb, dbf, DBGrids, db, variants, DbCtrls;
type
 { TForm1 }
 TForm1 = class(TForm)
 ButtonCalc: TButton;
 ButtonFilterOn: TButton;
 ButtonFilterOff: TButton;
 ButtonCreate: TButton;
 ButtonFirst: TButton;
 ButtonClose: TButton;
 ButtonNext: TButton;
 ButtonLast: TButton;
 ButtonPrior: TButton;
 ButtonOpen: TButton;
 Datasource1: TDatasource;
 Dbf1: TDbf;
 DBGrid1: TDBGrid;

 188

 DBNavigator1: TDBNavigator;
 procedure ButtonCalcClick(Sender: TObject);
 procedure ButtonCloseClick(Sender: TObject);
 procedure ButtonCreateClick(Sender: TObject);
 procedure ButtonFilterOffClick(Sender: TObject);
 procedure ButtonFilterOnClick(Sender: TObject);
 procedure ButtonFirstClick(Sender: TObject);
 procedure ButtonLastClick(Sender: TObject);
 procedure ButtonNextClick(Sender: TObject);
 procedure ButtonOpenClick(Sender: TObject);
 procedure ButtonPriorClick(Sender: TObject);
 private
 { private declarations }
 public
 { public declarations }
 end;
var
 Form1: TForm1;
implementation
{ TForm1 }
procedure TForm1.ButtonOpenClick(Sender: TObject);
var i:integer;
begin
 with Dbf1 do begin
 FilePath:='';
 TableName:='mybase.dbf';
 Open; IndexName:='indFIO';
 DBGrid1.Columns[0].Title.Caption:='Прізвище';
 DBGrid1.Columns[1].Title.Caption:='І’мя';
 DBGrid1.Columns[2].Title.Caption:='По батькові';
 DBGrid1.Columns[3].Title.Caption:='Група';
 DBGrid1.Columns[4].Title.Caption:='Д/н';
 for i:=5 to 9 do DBGrid1.Columns[i].Title.Caption:='R'+IntToStr(i-4);
 for i:=1 to FieldCount do begin
 DBGrid1.Columns[i-1].Title.Alignment:=taCenter;
 case i of
 1..3: DBGrid1.Columns[i-1].Width:=
round(DBGrid1.Columns[i-1].Width*2/3);
 4,5: DBGrid1.Columns[i-1].Width:=DBGrid1.Columns[i-1].Width-1;
 else DBGrid1.Columns[i-1].Width:=DBGrid1.Columns[i-1].Width div 2
 end end;
 DBGrid1.TitleFont.Style:=[fsBold];
 end
end;

 189

procedure TForm1.ButtonCloseClick(Sender: TObject);
begin
 Dbf1.Close
end;
procedure TForm1.ButtonCalcClick(Sender: TObject);
var i:integer;s:real;
begin
 with Dbf1 do begin
 First;
 while not EOF do begin
 s:=0;
 for i:=1 to 5 do
 s:=s+Fields[4+i].asInteger;
 s:=s/5;
 Edit;
 FieldByName('SR').asFloat:=s;
 Post;
 Next
 end
 end;
end;
procedure TForm1.ButtonCreateClick(Sender: TObject);
begin
 with Dbf1 do begin
 FilePath:=''; // у поточній папці
 TableName:='mybase.dbf';
 with FieldDefs do begin
 Clear;
 Add('Fam',ftString,20,true);
 Add('Name',ftString,20,false);
 Add('Parent',ftString,20,false);
 Add('Group',ftString,10,false);
 Add('DR',ftDate,0,false);
 Add('R1',ftInteger,0,false);
 Add('R2',ftInteger,0,false);
 Add('R3',ftInteger,0,false);
 Add('R4',ftInteger,0,false);
 Add('R5',ftInteger,0,false);
 Add('SR',ftFloat,0,false)
 end;{FieldDefs}
 CreateTable;
 Open;
 AddIndex('indFIO','Fam+Name',[ixExpression]);
 IndexName:='indFIO';
 Append;

 190

 FieldByName('Fam').AsString:='Іванов';
 FieldByName('Name').AsString:='Петро';
 FieldByName('Parent').AsString:='Сергійович';
 FieldByName('Group').AsString:='СМ-15-2';
 FieldByName('DR').AsDateTime:=StrToDate('12.01.95');
 FieldByName('R1').AsInteger:=55;
 FieldByName('R2').AsInteger:=75;
 FieldByName('R3').AsInteger:=80;
 FieldByName('R4').AsInteger:=65;
 FieldByName('R5').AsInteger:=81;
 Post;
 Append;
 FieldByName('Fam').AsString:='Сидорова';
 FieldByName('Name').AsString:='Ксенія';
 FieldByName('Parent').AsString:='Едуардівна';
 FieldByName('Group').AsString:='СМ-15-2';
 FieldByName('DR').AsDateTime:=StrToDate('9.09.95');
 FieldByName('R1').AsInteger:=75;
 FieldByName('R2').AsInteger:=75;
 FieldByName('R3').AsInteger:=76;
 FieldByName('R4').AsInteger:=77;
 FieldByName('R5').AsInteger:=75;
 Post;
 Close
 end;
 ButtonOpenClick(Sender)
end;
procedure TForm1.ButtonFilterOffClick(Sender: TObject);
begin
 with Dbf1 do begin Filtered:=False; Filter:='' end
end;
procedure TForm1.ButtonFilterOnClick(Sender: TObject);
begin
 with Dbf1 do begin Filter:='SR >= 90'; Filtered:=True end
end;
procedure TForm1.ButtonFirstClick(Sender: TObject);
begin
 Dbf1.First
end;
procedure TForm1.ButtonLastClick(Sender: TObject);
begin
 Dbf1.Last
end;

 191

procedure TForm1.ButtonNextClick(Sender: TObject);
begin
 if not Dbf1.EOF then Dbf1.Next
end;
procedure TForm1.ButtonPriorClick(Sender: TObject);
begin
 if not Dbf1.BOF then Dbf1.Prior
end;
initialization
 {$I unit1.lrs}
end.

Рисунок 3.58

Рисунок 3.59

 192

Рисунок 3.60 – Робота додатка: створення бази даних

Рисунок 3.61 – Робота додатка: додавання нових записів

Рисунок 3.62 – Робота додатка: розрахунок середніх рейтингів

 193

Рисунок 3.63 – Робота додатка: фільтрація

Висновки. Під час лабораторної роботи було створено програму
для створення та обробки бази даних заданого формату. Для цього викори-
стовувалися компоненти Button, Datasource, Dbf, DBGrid, DBNavigator.
Додаток реалізовано у вигляді однієї форми; вибір користувача здійсню-
ється за допомогою низки стандартних кнопок. Користувачеві пропонуєть-
ся можливість створити нову базу даних, відкрити і закрити існуючу базу
даних, переміщатися набором даних, вводити і модифікувати дані, прово-
дити розрахунок додаткового поля (середній рейтинг), фільтрувати дані
(відображати лише здобувачів-відмінників) і скасовувати фільтр.

Самостійна робота. Створення пакета для оброблення даних
у середовищі Lazarus

Завдання до роботи:
 1 Створити текстовий файл, що містить дані про здобувачів у тако-

му вигляді: Прізвище Ім'я Група Рік_народження R1 R2 R3 R4 R5. Напри-
клад: Іванов Іван СМ-12-3 1995 77 75 81 85 92, де R1...R5 – рейтинги
з п'яти предметів за 100-бальною шкалою; усього файл повинен містити
не менше 10 рядків-записів.

 2 Розробити повнофункціональний Windows-додаток у середовищі
візуального програмування Lazarus, яке б зчитувало інформацію з файла
в набір даних (компонента SdfDataSet) і здійснювало його оброблення. До-
даток повинен містити, як мінімум, головне меню («Виведення даних на
екран», «Виведення даних до текстового файла», «Розрахунок додаткового
поля», «Сортування даних за заданим полем», «Побудова діаграм», «Ви-
хід»), memo-поле для виведення результатів і PaintBox (Panel) для побудо-
ви діаграм. Додавання інших компонент для поліпшення інтерфейсу дода-
тку схвалюється.

 194

 3 Імена файлів для завантаження/збереження даних повинні задава-
тися із застосуванням стандартних діалогових компонент (OpenDialog,
SaveDialog). Виведення даних передбачається як на екран, так і в тексто-
вий файл (за вибором користувача).

 4 Додаткове поле обчислюється згідно з індивідуальним завданням
(табл. 3.9). Масив сортується за заданим полем заданим методом
(табл. 3.10, стов. 2 і 3).

 5 Стовпчаста діаграма повинна відображати порівняння рейтингів
заданих предметів і RS (RM) для кожного здобувача (номери предметів на-
ведено в табл. 3.10, стов. 4; назви придумати самостійно). Необхідний вид
діаграми наведено на рисунку 3.64. Побудова діаграм можлива як за допо-
могою властивості Canvas компоненти PaintBox, так і шляхом розміщення
декількох компонент Shape (з автоматичним обчисленням розмірів).

Таблиця 3.9 – Варіанти для розрахунку додаткового поля

Варіант Умова

1...8
Визначити максимальний рейтинг RM з усіх предметів
у кожного здобувача

9…16
Визначити мінімальний рейтинг RM з усіх предметів
у кожного здобувача

17...30
Визначити середній рейтинг RM з усіх предметів у кожно-
го здобувача

Таблиця 3.10

Вар. Поле
для сортування Алгоритм сортування Номер

предмета
1 2 3 4
1 Прізвище Сортування обмінами Четвертий
2 Ім’я Сортування вставками П’ятий
3 Група Сортування вибором Перший
4 Рік народження Швидке сортування Хоора Другий
5 Рейтинг Піраміда Вільямса – Флойда Третій
6 Рейтинг Сортування обмінами Четвертий
7 Прізвище Сортування вставками П’ятий
8 Ім’я Сортування вибором Перший
9 Група Швидке сортування Хоора Другий
10 Рік народження Піраміда Вільямса – Флойда Третій
11 Рік народження Сортування обмінами Четвертий
12 Рейтинг Сортування вставками П’ятий
13 Прізвище Сортування вибором Перший
14 Ім’я Швидке сортування Хоора Другий

 195

Продовження таблиці 3.10

1 2 3 4
15 Група Піраміда Вільямса – Флойда Третій
16 Група Сортування обмінами Четвертий
17 Рік народження Сортування вставками П’ятий
18 Рейтинг Сортування вибором Перший
19 Прізвище Швидке сортування Хоора Другий
20 Ім’я Піраміда Вільямса – Флойда Третій
21 Ім’я Сортування обмінами Четвертий
22 Група Сортування вставками П’ятий
23 Рік народження Сортування вибором Перший
24 Рейтинг Швидке сортування Хоора Другий
25 Прізвище Піраміда Вільямса – Флойда Третій
26 Ім’я Швидке сортування Хоора Четвертий
27 Група Піраміда Вільямса – Флойда П’ятий
28 Рік народження Швидке сортування Хоора Перший
29 Рейтинг Сортування обмінами Другий
30 Рік народження Сортування вставками Третій

Рисунок 3.64 – Орієнтовний вигляд результатів розрахунків

 196

4 ОСНОВНІ ПОНЯТТЯ ОБ'ЄКТНО-ОІЕНТОВАНОГО
ПІДХОДУ Й ОБ'ЄКТНО-ОРІЄНТОВАНЕ ПРОГРАМУВАННЯ

НА МОВАХ C++ ТА JAVA

4.1 Основні поняття об’єктно-орієнтованого підходу

Усі методи проєктування програмних систем можна об'єднати в три
групи:

– структурне проєктування зверху донизу, в основі якого лежить ал-
горитмічна декомпозиція, і яке не може забезпечити створення складних
систем і неефективне в об'єктно-орієнтованих мовах;

– метод потоків даних, коли система розглядається як перетворювач
вхідних потоків на вихідні;

– об'єктно-орієнтоване проєктування.
Об'єктно-орієнтоване програмування (OOP – Object-oriented

programming) – це методологія програмування, заснована на поданні про-
грами у вигляді сукупності об'єктів, кожний з яких є екземпляром певного
класу, а класи утворюють ієрархію спадкоємства. Слід розрізняти «об'єкт-
ні» («об'єктно-базовані») і «об'єктно-орієнтовані» мови програмування.

Об'єктно-орієнтоване проєктування (OOD – Object-oriented
design) – це методологія проєктування, що сполучає в собі процес об'єктної
декомпозиції і прийоми подання логічної і фізичної, а також статичної
і динамічної моделей проєктованої системи.

Об'єктно-орієнтований аналіз (OOA – Object-oriented analysis) – це
методологія, при якій вимоги до системи сприймаються з погляду класів
і об'єктів, виявлених у наочній області.

У результаті об'єктно-орієнтованого аналізу формуються моделі,
на яких ґрунтується об'єктно-орієнтоване проєктування, що створює фун-
дамент для остаточної реалізації системи з використанням методології об'-
єктно-орієнтованого програмування. Усі три методології базуються
на поняттях об'єктної моделі.

Об'єктна модель

Об'єктна модель є концептуальною базою об'єктно-орієнтованого
стилю. Вона складається з чотирьох головних елементів (абстрагування,
інкапсуляція, модульність, ієрархія) і трьох додаткових (типізація, парале-
лізм, збереженність), які корисні, але не обов'язкові.

Абстрагування виділяє істотні характеристики деякого об'єкта, відрі-
зняючи його від всіх інших видів об'єктів, і, таким чином, чітко визначає йо-
го концептуальні межі з погляду спостерігача. Головний принцип абстрагу-
вання – принцип якнайменшого здивування, згідно з яким абстракція

 197

повинна охоплювати всю поведінку об'єкта, але не привносити сюрпризів
або побічних ефектів, що лежать поза її сферою застосовності.

Вибір правильного набору абстракцій – найголовніша задача.
Абстракції можна об'єднати в 4 групи.
Абстракція суті: об'єкт є корисною моделлю якоїсь суті в наочній

області.
Абстракція поведінки: об'єкт складається з узагальненої безлічі

операцій.
Абстракція віртуальної машини: об'єкт групує операції, які або ра-

зом використовуються вищим рівнем управління, або самі використовують
деякий набір операцій нижчого рівня.

Довільна абстракція: об'єкт уключає набір операцій, що не мають
один із одним нічого спільного.

Приклади абстракцій у гідропонному господарстві: теплиця, темпера-
тура, вогкість, освітлення, кислотність, датчики, культури, план вирощування.

Інкапсуляція – це процес відокремлення один від одного елементів
об'єкта, що визначають його будову й поведінку; слугує для того, щоб ізо-
лювати контрактні зобов'язання абстракції від їхньої реалізації.

Абстрагування та інкапсуляція доповнюють одне одного: перше на-
правлене на спостережувану поведінку об’єкта, а друга займається його
внутрішнім устроєм. Інтерфейс відображає зовнішню поведінку об’єкта,
описуючи абстракцію поведінки всіх об'єктів даного класу; внутрішня реа-
лізація описує подання цієї абстракції і механізми досягнення бажаної по-
ведінки об’єкта.

(Слід звернути увагу: «Інкапсуляція не рятує від дурості; вона захи-
щає від помилок, але не від шахрайства» – Б. Страуструп.)

Приклад: простий нагрівник має розташування (конструктор), уми-
кач, вимикач і перевірку стану. Ускладнений нагрівник може бути пов'яза-
ний із датчиком температури й планом вирощування.

Модульність – це властивість системи розкладатися на внутрішньо
зв'язні, але слабо зв'язані між собою модулі. Логічне продовження
інкапсуляції – її «практична проєкція».

Ієрархія – це впорядкування абстракцій, розташування їх за рівнями.
Розрізняють два види ієрархічних структур: структура класів (is-а)
і структура об'єктів (part of).

Структура класів є ієрархією спадкоємства типу «узагальнення-
спеціалізація», у якій підклас (нащадок) є спеціалізованим окремим випад-
ком свого суперкласу (предка). Приклад: «токар є окремий випадок робіт-
ника», «датчик температури є окремим випадком датчика».

Структура об'єктів є ієрархією типу «агрегація», у якій один об'єкт
міститься усередині іншого. Приклад: «вікно містить смуги прокрутки, ме-
ню, рядок стану», «управляючий елемент у теплиці містить датчики тем-
ператури, вогкості, кислотності й освітлення».

 198

Типізація – це спосіб захиститися від використання об'єктів одного
класу замість іншого або, принаймні, управляти таким використанням. Ти-
пізація примушує виражати абстракції так, щоб мова програмування під-
тримала дотримання ухвалених проєктних рішень. Розрізняють сильну
й слабку типізації.

Паралелізм – це властивість, що відрізняє активні об'єкти від пасив-
них. Припускає паралельну (незалежну) роботу ряду активних об'єктів.
При проєктуванні треба вживати заходів, які гарантують, що об'єкт не буде
розтерзаний на частини декількома незалежними процесами.

Збереженість – здатність об’єкта існувати в часі, переживаючи
процес, що його породив, та в просторі, переміщаючись зі свого первинно-
го адресного простору.

Спектр збереженості об'єктів охоплює:
– проміжні результати обчислення виразів;
– локальні змінні в підпрограмах;
– власні (глобальні) змінні та динамічно створювані дані;
– дані, що зберігаються між сеансами виконання програми;
– дані, що зберігаються при переході на нову версію програми;
– дані, які взагалі переживають програму.
Традиційно, першими трьома рівнями займаються мови програму-

вання, а останніми – бази даних. Можливі змішані рішення: програмісти
розробляють спеціальні схеми для збереження об'єктів у період між запус-
ками програми, а конструктори баз даних переінакшують свою технологію
під короткоживучі об'єкти.

Існують так звані об'єктно-орієнтовані бази даних, які зберігають
не тільки дані, але й класи. Ця технологія не прижилася, на практиці вва-
жають за краще створювати об'єктно-орієнтовану оболонку для реляційних
баз даних.

Переваги об'єктної моделі

1. Дозволяє повною мірою використовувати можливості об'єктних
і об'єктно-орієнтованих мов програмування.

2. Підвищує рівень уніфікації розробки й придатність для повторно-
го використання не тільки програм, але й проєктів. Використання попере-
дніх розробок дає виграш у вартості та часі.

3. Спрощує процес внесення змін через наявність стабільних промі-
жних описів. Це надає змоги не переробляти систему цілком навіть у разі
істотних змін початкових вимог.

4. Зменшує вірогідність допущення різноманітних помилок.
5. Орієнтована на людське сприйняття світу.

Деякі факти з історії

1969 – Кей (Kay) у своїй дисертації запропонував ідею об'єктного
підходу;

 199

1979 – Джонс (Jones) увів концепцію об'єктного підходу;
1981 – Буч (Booch) запропонував методи OOD;
1988 – Шлаєр і Меллор (Shlaer and Mellor) запропонували методи

OOA;
1988 – Страуструп (Stroustrup) опублікував методичну статтю

про OOP;
1991 – Румбах (Rumbaugh) об'єднав OOA і OOD.
Організації, що відповідають за стандарти за об'єктною технологією:

Object Management Group (OMG) і комітет ANSI X3J7.

Класи та об'єкти
Одними з базових понять об'єктної моделі є поняття класів і об'єктів.
Об'єкт моделює частину навколишньої дійсності і, таким чином, іс-

нує в часі та просторі. Об'єкт має стан, поведінку й ідентичність; структура
і поведінка схожих об'єктів визначають загальний для них клас; терміни
«екземпляр класу» і «об'єкт» взаємозамінні.

Стан об’єкта характеризується переліком (зазвичай статичним) усіх
властивостей певного об’єкта і поточними (зазвичай динамічними) значен-
нями кожної з цих властивостей. Приклад: автомат із продажу напоїв.

Поведінка визначає сукупність дій і реакцій об’єкта; виражається
в термінах стану об’єкта й передачі повідомлень. Іншими словами, поведі-
нка об’єкта – це спостережувана й перевіряльна ззовні діяльність. Стан
об’єкта є сумарним результатом його поведінки.

Операцією називається певна дія одного об’єкта на інший із метою
викликання відповідної реакції; це послуга, яку клас може надати своїм
клієнтам. Типовий клієнт може здійснювати операції 5 видів:

Модифікатор – операція зміни стану об’єкта.
Селектор – операція, що прочитує стан об’єкта, але не змінює його.
Ітератор – операція, що дозволяє організувати доступ до всіх час-

тин об’єкта в точній послідовності.
Конструктор – операція створення об’єкта і/або його ініціалізації.
Деструктор – операція очищення і/або руйнування об’єкта.
Сукупність усіх методів і вільних процедур, що відносяться до конк-

ретного об’єкта, утворює протокол цього об’єкта.
Об'єкти можуть бути активними й пасивними. Активний об'єкт може

проявляти свою поведінку без дії з боку інших об'єктів. Пасивний об'єкт,
навпаки, може змінювати свій стан тільки під впливом інших об'єктів. Та-
ким чином, активні об'єкти системи – джерела управляючих дій.

Ідентичність – це така властивість об’єкта, яка відрізняє його
від усіх інших об'єктів. Слід уміти відрізняти ім'я об’єкта від самого
об’єкта. Якщо абстракція є сукупністю властивостей без власної поведін-
ки, це не об'єкт, а структура.

Система реалізується тільки в процесі взаємодії об'єктів. Відношення
між об'єктами можуть бути двох типів: зв'язок і агрегація.

 200

Зв'язок – це специфічне зіставлення, через яке клієнт запрошує послу-
гу в об’єкта-сервера або через яке один об'єкт знаходить шлях до іншого.

Беручи участь у зв'язку, об'єкт може виконувати одну з трьох ролей:
– актор: може впливати на інші об'єкти, але сам ніколи не підда-

ється дії інших об'єктів (виключно активний об'єкт);
– сервер: може тільки піддаватися дії з боку інших об'єктів, але сам

ніколи не виступає в ролі впливаючого об’єкта (виключно пасив-
ний об'єкт);

– агент: може виступати як в активній, так і в пасивній ролі.
На рисунку 4.1 зображені чотири об'єкти, кожний з яких характери-

зує описані вище ролі.

Рисунок 4.1 – Взаємодіючі об'єкти

Агрегація може означати фізичне входження одного об'єкта до іншо-

го (автомобіль і двигун), але не обов'язково (акціонер й акції). Приклад аг-
регації з фізичним входженням поданий на рисунку 4.2.

Рисунок 4.2 – Агрегація

Клас – це деяка множина об'єктів, що мають спільну структуру й

спільну поведінку. У той час як об'єкт позначає конкретну сутність, клас

контролер

h: Нагрівач

a

b

c d

отримати()

передати()

 201

визначає лише абстракцію істотного в об'єкті. Будь-який конкретний об'єкт
є просто екземпляром класу.

Підтримуються 6 (шість) видів відносин між класами.
1 Асоціація – смисловий зв'язок (за замовчуванням – двосторонній),

що фіксує учасників, їхні ролі й потужність відносини (1:1, 1:*, *:*):

* 1
Товар Угода

2 Спадкування – таке відношення між класами, коли один клас по-
вторює структуру й поведінку іншого або інших класів. Установлює відно-
шення загального й частки. Класи, екземпляри яких створюються, назива-
ються конкретними, не створюються – абстрактними. Висновки: у будь-якого
класу може бути два види клієнтів – екземпляри (об'єкти) і підкласи (спадко-
ємці). Зображується у вигляді стрілки, спрямованої від нащадка до предка:

Датчик Датчик температури

3 Агрегація між класами має ту саму сутність, що й у випадку об'-
єктів. Розрізняють агрегацію за значенням (фізичне включення) і за поси-
ланням. Якщо є сумніви у виборі між спадкуванням й агрегацією, краще
вибрати другу. Зображується у вигляді лінії із зафарбованим колом:

Контролер Нагрівач

4 Відношення використання між класами відповідає зв'язку між їх-
німи екземплярами (клієнт – серверні відносини). Зображується у вигляді
лінії з порожнім колом:

Контролер План вирощування

5 Інстанцювання припускає використання параметризованих кла-
сів, коли як формальний параметр класу передається покажчик на який-
небудь клас, а при звертанні до його екземпляра формальний параметр за-
міщається фактичним. Є продовженням (або окремим випадком) відносини
використання. Зображується у вигляді прямокутника-урізання в правому
верхньому куті класу.

6 Метаклас – це клас, екземпляри якого є класами. Зображується
у вигляді зафарбованого класу.

На етапі аналізування й ранніх стадій проєктування вирішуються два
основні завдання:

– виявлення основних класів й об'єктів, що становлять словник
предметної області;

– побудова структур, що забезпечують взаємодію об'єктів, при яко-
му виконуються вимоги завдання.

 202

Для оцінювання якості класів й об'єктів, зазначених у системі, можна
запропонувати такі п'ять критеріїв: зачеплення, зв’язність, достатність, по-
внота й примітивність.

Зачеплення визначає степінь глибини зв'язків між окремими моду-
лями (чим менше, тим краще). Приклад неправильного підходу: джерело
живлення стереосистеми розміщений в одному зі стовпчиків.

Зв’язність – це степінь взаємодії між елементами окремого модуля
(класу, об'єкта), характеристика його насиченості: «Клас Dog буде функці-
онально зв'язаним, якщо він описує поведінку собаки, і нікого більше, крім
собаки».

Достатність – наявність у класі або модулі всього необхідного для
реалізації логічної й ефективної поведінки.

Під повнотою мається на увазі наявність в інтерфейсній частині
класу всіх характеристик абстракції; інтерфейс повинен гарантувати все
для взаємодії з користувачами.

Примітивними є тільки такі операції, які вимагають доступу
до внутрішньої реалізації абстракції.

Класифікація

Класифікація – це засіб упорядкування знань. Історично відомі тіль-
ки три підходи: класична категоризація, концептуальна кластерізація, тео-
рія прототипів.

При класичному підході всі речі, що мають дану властивість або су-
купність властивостей, формують деяку категорію. Причому наявність цих
властивостей є необхідною й достатньою умовою, що визначає категорію.

Однак природні категорії нечітко відокремлені одна від одної. Біль-
шість птахів літає, але не всі. Стілець може бути дерев'яним, металевим
або пластмасовим, а кількість ніжок необов'язково дорівнює чотирьом.

Концептуальна кластерізація – сучасний варіант класичного під-
ходу. Тут спочатку формуються концептуальні описи класів («кластерів
об'єктів»), а потім ми класифікуємо сутності відповідно до їх описів. Це
саме поняття, а не ознака або властивість: «Якщо пісня скоріше про любов,
чим про щось інше, то ми відносимо її до категорії любовна пісня, хоча
степінь любовності навряд чи можна виміряти».

Концептуальну кластерізацію можна зв'язати з теорією нечітких (ба-
гатозначних) множин, у якій об'єкт може належати до декількох категорій
одночасно з різним степенем точності.

Однак існують деякі абстракції, які не мають ні чітких властивостей, ні
чіткого визначення. Теорія прототипів визначає клас одним об'єктом-
прототипом; новий об'єкт відноситься до класу за умови, що він наділений іс-
тотною подібністю із прототипом. Приклад: ігри.

На практиці ми спочатку ідентифікуємо класи й об'єкти за властиво-
стями, важливими у даній ситуації, тобто намагаємося зазначити й відібра-
ти структури й типи поведінки за допомогою словника предметної області.

 203

Якщо таким шляхом не вдалося побудувати нормальної структури класів,
ми пробуємо концептуальний підхід: приділяємо увагу поведінці об'єктів.
Нарешті, пробуємо зазначити прототипи й асоціювати з ними об'єкти. Ці
три способи класифікації становлять теоретичну основу об'єктно-
орієнтованого аналізу.

Межі між стадіями аналізування й проєктування розмиті, однак
у процесі аналізування ми моделюємо проблему, виявляючи класи й об'єк-
ти, які становлять словник предметної області, у той час як на стадії проєк-
тування ми винаходимо абстракції й механізми, що забезпечують необхід-
ну поведінку.

Існує сім перевірених практикою підходів до аналізування об'єктно-
орієнтованих систем.

1 Класичні підходи – спираються на класичну категоризацію.
Шлаєр і Меллор: відчутні предмети (датчики), ролі (робітник, студент),

події (запит, переривання), взаємодія (зустріч, перетинання).
Росс (БД): люди (виконують певні функції), місця (області, пов'язані з

людьми або предметами), предмети (відчутний матеріальний об'єкт), організації
(формально організована сукупність людей і предметів, що має певну мету й не
залежить від окремих індивідуумів), концепції (принципи й ідеї), події.

Коад і Йордан: структури (відносини «ціле – частина» й «загальне –
частка»), інші системи (зовнішні), пристрою, події, ролі, місця, організа-
ційні одиниці.

2 При аналізуванні поведінки саме динамічна поведінка розгляда-
ється як першоджерело класів й об'єктів; засноване на концептуальній кла-
стерізації. Ініціатори певної поведінки його учасників розпізнаються як
об'єкти й становляться відповідальними за певні ролі. Приклади: уведен-
ня/виведення, запит.

3 Аналізування предметної області – спроба зазначити ті об'єкти,
операції й зв'язки, які експерти даної області вважають найбільш важливими.

Етапи: побудова базової моделі предметної області; вивчення іс-
нуючих у даній області систем; визначення подібності й розходжень між
системами; уточнення загальної моделі для пристосування до потреб конк-
ретної системи.

Приклад: предметна область – бухгалтерські звіти; визначаються
абстракції й механізми, що обслуговують усі види звітів; мета вихідного
завдання – створення системи звітів.

Експерт – майбутній користувач системи (бухгалтер, диспетчер).
4 Окремо всі перелічені вище підходи дуже залежать від індивідуа-

льних здатностей і досвіду аналітика. Аналізування варіантів передбачає
впорядковане послідовне їхнє використання. Заснований на перелічуванні
й ретельному опрацюванні сценаріїв роботи системи.

5 Метод CRC-карток вдало реалізує на практиці попередній під-
хід (Class / Responsibilities / Collaborators – Клас / Відповідальності / Учас-
ники). Зверху на картці пишеться назва класу, знизу в лівій половині –

 204

за що він відповідає, у правій – з ким він співробітничає. Прохід сценарієм
викликає дописування нових пунктів в існуючих картках або створення
нових. Розташування карток може показати потік повідомлень між об'єк-
тами й ієрархію класів.

6 Неформальний опис – радикальна альтернатива класичному ана-
лізуванню (Аббот). Треба описати завдання або його частину на звичайній
(людській) мові, а потім підкреслити іменники й дієслова. Іменники – кан-
дидати на роль класів, а дієслова можуть стати іменами операцій. Метод
можна автоматизувати. Використовується в Токійському технологічному
інституті й в Fujitsu.

7 Друга альтернатива класичній техніці – використання структур-
ного аналізу як основи об'єктно-орієнтованого проєктування. Після його
проведення ми вже маємо модель системи, описану діаграмами потоків да-
них; виходячи із цього, можна почати визначення класів й об'єктів будь-
якими іншими способами.

4.2 Клас як абстрактний тип даних

Клас – це похідний структурований тип, що задає деяку сукупність
типізованих даних і дозволяє визначити набір операцій над цими даними.

Визначається за допомогою конструкції:

ключ_класу ім'я_класу { список_компонентів };

де ключ_класу – одне зі службових слів class, struct або union;
ім'я_класу – довільно вибраний ідентифікатор;
список_компонентів – визначення й опис типізованих даних і при-

належних до класу функцій (тіло класу).
Компонентами класу можуть бути дані, функції, класи, перерахуван-

ня, бітові поля, дружні функції, дружні класи й імена типів. Інакше кажу-
чи, компоненти класу – це типізовані дані (базові й похідні) і функції.

Приналежні класу функції називаються методами класу або компо-
нентними функціями. Дані класу називають компонентними даними
або елементами даних класу.

Клас відрізняється від структури можливістю включення компонен-
тних функцій:

struct complex1 // Клас «комплексне число»
{
 double real; // Речовинна частина
 double imag; // Уявна частина
 void define (double re=0.0, double im=0.0)
 { real=re; imag=im; }

 205

 void display ()
 { printf("real=%5.2f, imag=%5.2f\n",real,imag); }
};

Клас має права типу, для опису об'єкта класу використовується запис:
ім'я_класу ім'я_об'єкта;

Наприклад:
complex1 x1,x2,D;
complex1 *p=&D;
complex1 dim[8];

До компонентів класу можна звертатися за допомогою:
1) уточнених імен: ім'я_об'єкта.ім'я_компонента;
2) «кваліфікованих» імен: ім'я_класу:: ім'я_компонента;
3) покажчиків на об'єкт класу:

 покажчик_на_об'єкт_класу -> ім'я_компонента

Приклади:
x1.define(); // Параметри вибираються за замовчуванням
x2.define(4.3,20.0); // 4.3 + i 20.0
x2.display(); // Виведення на екран: real= 4.3, imag= 20.0
p->real=2.3;
p->imag=6.1;
p->display();

Визначення даних класу аналогічно опису об'єктів базових і похід-

них типів, за деякими виключеннями: при описі елементів класу не допус-
кається їхня ініціалізація.

Помилка: struct complex1 { ... double real=0; ... };
Розглянемо клас, що описує товари на складі магазину. Компонента-

ми класу будуть:
– назва товару;
– оптова (закупівельна) ціна;
– роздрібна (торговельна) націнка;
– функція уведення даних про товар;
– функція виводу відомостей про товар із вказівкою роздрібної ціни.

#include <stdio.h>
class goods // Клас «товари»
{
 char name[40]; // Назва
 float price; // Закупівельна ціна
 static int percent; // Торговельна націнка в %

 206

 void input ()
 {
 printf("Назва товару: "); scanf("%s", name);
 printf("Закупівельна ціна: "); scanf("%i", price);
 }
 void display ()
 { printf("%10s\t, ціна %5.2f\n",name,price*(1+goods::percent*0.01)); }
};
void main()
{
goods wares[5];
…
}

Торговельна націнка визначена як статичний компонент класу.

Такі компоненти не дублюються при створенні об'єктів (екземплярів) класу,
тобто кожен статичний компонент існує в єдиному екземплярі. Доступ
до нього можливий тільки після ініціалізації:

тип ім'я_класу:: ім'я_компонента=ініціалізатор;

Наприклад: int goods::percent=12;
Статичні компоненти класу мають практичний сенс при

роботі зі зв'язними списками, указуючи на їхні початки:

class list
{
 …
 public:
 static list *begin; // Початок списку
 …
};
list *list::begin=NULL; // Ініціалізація статичного компонента

Головний недолік обох розглянутих прикладів: відсутність автома-

тичної ініціалізації створюваних об'єктів – необхідно явно викликати фун-
кції define(), input() або привласнювати значення компонентним даним об'-
єкта.

Для автоматичної ініціалізації компонентних даних об'єкта до визна-
чення класу можна явно включати спеціальну компонентну функцію, яка
має назву конструктор:

ім'я_класу (список_формальних_параметрів)
{ оператори_тіла_конструктора };

 207

Ім'я такої функції повинне збігатися з ім'ям класу. Вона буде автома-
тично викликатися при визначенні або розміщенні в пам'яті кожного об'єк-
та класу. Переробимо частину першого прикладу:

complex1 (double re=0.0, double im=0.0)
 { real=re; imag=im; }
Оголошення даних набуде вигляду
complex1 x1,x2(4.3,20.0);

Особливості конструкторів

1 Для конструктора не визначається тип значення, що повертаєть-
ся, (навіть void).

2 Конструктор завжди автоматично викликається при визначенні
(створенні) об'єкта класу. При відсутності параметрів використаються зна-
чення за замовчуванням.

3 Конструктор існує для будь-якого класу, причому він може бути
створений без явних указівок програміста. Наприклад, конструктор копію-
вання: class F { ... public: F (const F&); ... }

4 У класі може бути кілька конструкторів (перевантаження), але
тільки один зі значеннями параметрів за замовчуванням.

5 Не можна одержати адресу конструктора (&complex1).
6 Параметром конструктора не може бути його власний клас, але

може бути посилання на нього, як у конструктора копіювання.
7 Конструктор не можна викликати як звичайну компонентну функцію.
Існує два способи ініціалізації даних об'єкта за допомогою конструкторів.
Перший – передача значень параметрів до тіла конструктора

(див. попередній приклад).
Другий – застосування списку ініціалізаторів даного об'єкта, що

розміщується між списком параметрів і тілом конструктора:

ім'я_класу (список_формальних_параметрів): список_инициализаторов
{ тіло_конструктора };

Кожен ініціалізатор списку відноситься до конкретного компонента

й має вигляд
ім'я_компонента_даних (вираз)
Наприклад:
class AZ
{ int ii; float ff; char cc;
 public:
 AZ(int in, float fn, char cn): ii(5), ff(ii*fn+in), cc(cn) {}
 …
}
AZ A(2,3.0,’d’); // Одержуємо: A.ii=5, A.ff=17, A.cc='d'

 208

Деструктор (руйнівник об'єктів) класу має формат
~имя_класу () { оператори_тіла_деструктора };

Особливості деструкторів

1 Назва складається зі значка «~» й імені класу (без пробілів).
2 У деструктора не може бути параметрів (навіть void).
3 Деструктор не має значення, що повертається (навіть void).
4 Виклик деструктора здійснюється неявно, автоматично, як тільки

об'єкт класу знищується.
Застосування деструкторів має сенс при роботі з динамічною пам'яттю:
~stroka() { delete [] ch; }

Видимість (доступність) компонентів

Усі компоненти класу можуть мати три степені доступу («видимості»):
public («загальнодоступний») – доступні для інших компонентів да-

ного класу, інших класів і всіх інших компонентів програми;
protected («захищений») – доступні для інших компонентів даного

класу і його нащадків (при побудові ієрархії класів);
private («власний») – доступні тільки для інших компонентів даного

класу.
Специфікатор доступу являє собою одне з указаних вище слів,

за яким розміщено двокрапку. Усе компоненти від цього місця до кінця ви-
значення класу або до іншого специфікатора змінюють статус на вказаний
вище.

Основний принцип ООП – інкапсуляція (приховання) даних усере-
дині об'єктів – не виконується для класу struct, оскільки всі його компоне-
нти одержують статус public. Усі компоненти класу, описаного за допомо-
гою службового слова class, завжди одержують статус private.

struct complex1 // Клас «комплексне число»
{
// За замовчуванням – public
complex1 (double re=0.0, double im=0.0)
 { real=re; imag=im; }
 void display ()
 { printf("real=%5.2f, imag=%5.2f\n",real,imag); }
private: // Змінити статус доступу на «приватний»
double real; // Речовинна частина
double imag; // Уявна частина
};

Для доступу до компонентних даних з операторів, які виконуються

поза визначенням класу, безпосереднє використання імен елементів не-
припустиме. Формально така заборона можна обійти перевизначенням

 209

степеня видимості на «public», але фактично це суперечить основному
принципу ООП.

На статичні дані класу також поширюються правила статусу досту-
пу. До моменту звертання до таких даних об'єкти можуть бути ще не ви-
значені, або їх може бути декілька. Можливість обійтися без імені конкре-
тного об'єкта при звертанні до статичних даних класу забезпечують стати-
чні компонентні функції:

ім'я_класу:: ім'я_статичної_функції

На відміну від звичайних (глобальних) функцій, компонентна функ-

ція має доступ до всіх компонентів класу, з будь-яким статусом доступу.
При визначенні класів їхні компонентні функції можуть бути специ-

фіковані як ті, що підставляються (inline). За замовчуванням вважається
функція як та, що підставляється, чиє визначення (не тільки заголовок, але
й тіло) повністю розміщене в тілі класу (див. усі попередні приклади).

Перевага: швидкий виклик. Недоліки: така функція не може містити
цикли й перемикачі, а також не може бути рекурсивною.

Звичайно використається інший підхід: у тілі класу розміщається тільки
прототип (заголовок) компонентної функції, а її визначення – поза класом, як
визначення звичайної програмної функції (з використанням «кваліфікованого
запису»). Опис класу із зовнішнім визначенням його компонентних функцій
надає змоги, не міняючи інтерфейс об'єктів класу, по-різному визначати його
компонентні функції.

Наведений нижче приклад використовує клас «точка на екрані».

#include <graphics.h>
#include <conio.h>
class pixel
{
 protected:
 int x,y; // Координати точки
 public:
 point(int xi=0, int yi=0); // Конструктор
 int getx(); // Координата за X
 int gety(); // Координата за Y
 void show(); // Зобразити на екрані
 void move(int xn=0, int yn=0);// Перемістити в нове місце
 private:
 void hide(); // Вилучити точку з екрана
};
pixel::pixel(int xi=0, int yi=0)
{ x=xi; y=yi; }
int pixel::getx() { return x; }

 210

int pixel::gety() { return y; }
void pixel::show() { putpixel(x,y,getcolor()); }
void pixel::hide() { putpixel(x,y,getbkcolor()); }
void pixel::move(int xn=0, int yn=0)
{
 hide();
 x=xn; y=yn;
 show();
}
void main()
{
 pixel A(200,100), B;
 int gd=0,gm;
 initgraph(&gd,&gm,"");
 A.show(); getch();
 B.show(); getch();
 B.move(200,200); getch();
 A.move(); getch();
 closegraph();
}

Коли функція, що належить класу, викликається для оброблення да-

них конкретного об'єкта, цій функції автоматично й неявно передається
покажчик на той об'єкт, для якого функція викликана (згадайте
Sender:TObject в Delphi / Lazarus). Цей покажчик має фіксоване ім'я this
і непомітно для програміста визначений у кожній функції класу в такий
спосіб:

ім'я_класу * const this = адреса_об'єкта;

Ім'я this є службовим словом. Явно визначити або перевизначити цей

покажчик не можна й не потрібно.
Виклик за посиланням:
{
this->real=5; this->imag=2;
}

Дружньою функцією класу називається функція, що, не будучи його

компонентом, має доступ до його захищених (protected) і власних (private)
компонентів. Функція не може стати другом класу без його згоди. Для оде-
ржання прав друга вона повинна бути описана в тілі класу зі специфікато-
ром friend (тобто в тілі класу розташовується прототип функції). Викорис-
тання механізму дружніх функцій дозволяє спростити інтерфейс між кла-
сами: із класів можна забрати деякі компонентні функції, призначені для
доступу до певних «схованих» компонентів.

 211

Особливості дружніх функцій
1 Дружня функція при виклику не одержує покажчика this.
2 На дружню функцію не поширюється дія специфікаторів досту-

пу; місце розташування її прототипу усередині класу не має значення.
3 Дружня функція може бути як глобальною функцією програми,

так і компонентною функцією іншого класу.
4 Функція може бути дружньою стосовно декількох класів.

Поширення дії (перевантаження) стандартних операцій

Мова C++ дозволяє поширити дію будь-якої стандартної операції на
нові типи даних, що вводять користувачі. Така можливість називається пе-
ревантаженням стандартних операцій. Процес здійснюється за допо-
могою спеціального «оператора функції»:

тип operator знак_операції (специфікація_параметрів) { операто-
ри_тіла }
де кількість параметрів залежить від «-арності» операції.

Наприклад, для поширення дії операції '*' (помножити) на об'єкти

класу T, може бути уведена функція
T operator * (T x, T y)

Таким чином, якщо описані два об'єкти А і В класу Т, то вираз А*В

інтерпретується як виклик функції operator * (A, B).
Приклад перевантаження операції додавання для рядків:
stroka& operator + (stroka& A, stroka& B)

Приклад заміни операції додавання на множення:

int operator + (int a, int b)

{ return a*b;}
int k=5+2; // k=10

4.3 Спадкування та інші можливості класів

Обґрунтовано уведений до програми об'єкт покликаний моделювати

властивості й поведінку деякого фрагмента розв'язуваного завдання, зв'я-
зуючи в єдине ціле дані й методи, що відносяться до цього фрагмента. Об'-
єкти взаємодіють між собою й з іншими частинами програми за допомо-
гою повідомлень. У кожному повідомленні об'єкту передається деяка ін-
формація. У відповідь на повідомлення об'єкт виконує деяку дію, передба-
чену набором компонентних функцій того класу, якому він належить. Та-
кою дією може бути зміна внутрішнього стану (зміна даних) об'єкта або
передача повідомлення іншому об'єкту.

 212

Кожен об'єкт є представником конкретного класу. Об'єкти різних
класів і самих класів можуть перебувати у відносинах спадкування, при
якому формується ієрархія об'єктів, що відповідає заздалегідь передбаче-
ній ієрархії класів.

Ієрархія класів дозволяє визначати нові класи на основі вже наявних.
Наявні класи звичайно називають базовими (породжаючими), а нові кла-
си, формовані на основі базових, – похідними (породженими), класами-
нащадками або спадкоємцями. Похідні класи «одержують спадщину» –
дані й методи своїх базових класів – і, крім того, можуть поповнюватися
власними компонентами (даними й методами). Наслідувані компоненти не
переміщаються в похідний клас, а залишаються в базових класах. Повід-
омлення, обробку якого не можуть виконати методи похідного класу, ав-
томатично передається до базового класу. Якщо для обробки повідомлення
потрібні дані, відсутні в похідному класі, то їх намагаються відшукати ав-
томатично й непомітно в базовому класі.

Приклад: ієрархія «точка – коло – коло_у_квадраті».
При спадкуванні деякі імена методів (компонентних функцій) і (або)

компонентних даних базового класу можуть бути по-новому визначені
в похідному класі. У цьому випадку відповідні компоненти базового класу
стають недоступні з похідного класу. Для доступу використається операція
«::» – уточнення області видимості.

Спадкування в ієрархії класів може відображатися й у вигляді дере-
ва, й у вигляді більш загального спрямованого ациклічного графа, у якому
показані відносини між об'єктами.

C++ допускає множинне спадкування – можливість для деякого кла-
су успадковувати компоненти декількох ніяк не зв'язаних між собою базо-
вих класів (рис. 4.3).

Рисунок 4.3

При описі похідного класу наводиться список усіх його

базових класів:

class S: X, Y, Z {...};

Нащадкові доступні тільки ті компоненти предків, які мають ста-

тус доступу public й protected. У породженому класі всі вони одержують

коло квадрат

коло у
квадраті

точка

 213

статус private, якщо новий клас визначений словом class, і статус public,
якщо визначено словом struct. Зрозуміло, статус компонентів можна змі-
нювати явною вказівкою нового статусу – як окремих компонентів, так і
всього наслідуваного класу:

class S: X, protected Y, public Z {...};

Ні базовий клас, ні похідний не можуть бути оголошені за допомо-

гою ключового слова union! Об'єднання не можуть використатися при по-
будові ієрархії класів.

Конструктори й деструктори не успадковуються, а створюються за-
ново в кожному класі-нащадку. Конструктор базового класу завжди ви-
кликається й виконується до конструктора похідного класу. Деструктор
похідного класу викликає деструктори базових класів, тобто порядок зни-
щення об'єктів протилежний стосовно порядку його конструювання. Конс-
труктори й деструктори автоматично одержують статус доступу public.

Приклад: ~krug_square() {~krug(); ~square();}
У будь-якому класі можуть бути як компоненти визначені інші класи.

У цих класах будуть свої деструктори, які при знищенні об'єкта охоплюючо-
го (зовнішнього) класу виконуються після деструктора охоплюючого класу.

Множинне спадкування й віртуальні базові класи

Клас називають безпосереднім (прямим) базовим класом (прямою
базою), якщо він входить до списка базових при визначенні класу. Водно-
час для похідного класу можуть існувати непрямі попередники, які слу-
жать базовими для класів, що входять до списку базових.

A (базовий клас – пряма база для B)
↑
B (похідний від A клас – пряма база для C)
↑
C (похідний клас – із прямою базою B і непрямою A)
Клас може мати кілька прямих базових класів, тобто може бути по-

роджений з будь-якої кількості базових класів (див. приклад раніше). Така
ситуація називається множинним спадкуванням.

При множинному спадкуванні ніякий клас не може більше одного
разу використатися в якості безпосереднього базового. Однак клас може
скільки завгодно разів бути непрямим базовим класом:

class X {…; f (); …};
class Y: public X {…};
class Z: public X {…};
class D: public Y, public Z {…};
У даному прикладі клас X двічі опосередковано успадковується кла-

сом D (рис. 4.4).

 214

Рисунок 4.4

Проілюстроване дублювання класу відповідає включенню до похід-

ного об'єкта декількох об'єктів базового класу. У такому випадку для звер-
тання до компонентів класу X необхідна «повна кваліфікація», наприклад:

D::Y::X::f() или D::Z::X::f()

Щоб усунути дублювання об'єктів непрямого базового класу при мно-

жинному спадкуванні, цей базовий клас необхідно оголосити віртуальним:
class X {…; f (); …};
class Y: virtual public X {…};
class Z: virtual public X {…};
class D: public Y, public Z {…};

Тепер клас D буде включати тільки один екземпляр X, доступ до

якого рівноправно мають класи Y й Z (рис. 4.5).

Рисунок 4.5

При множинному спадкуванні той самий базовий клас може бути

включений до похідного класу одночасно кілька разів, причому як віртуа-
льний, так і невіртуальний. Можливі будь-які комбінації віртуальних і не-
віртуальних базових класів.

Віртуальні функції та абстрактні класи

Іноді до базового класу необхідно помістити функцію, що повинна
по-різному виконуватися в похідних класах. Точніше, у кожному похідно-
му класі потрібен свій варіант цієї функції. Наприклад, клас «графічний
об'єкт» може визначати якісь дії над фігурою без конкретизації її виду,

X X

Y
Z

D

X

Y
Z

D

 215

а нащадки цього класу – «квадрат», «трикутник» тощо – однозначно ви-
значають форму й розміри цієї фігури. Класи, що включають такі функції,
називаються поліморфними.

Зазвичай вибір викликуваної функції визначається при написанні ви-
хідного тексту програми й не змінюється після компіляції. Такий режим
називається раннім або статичним зв'язуванням. Механізм віртуальних
функцій забезпечує пізніше або динамічне зв'язування.

class gr_obj
{
public:
 gr_obj(int col=7) {_color=col;}
 int color() { return _color; }
 virtual void draw() {}
 void show() { setcolor(color()); draw(); }
 void hide()
{ cback=getcolor(); setcolor(getbkcolor()); draw(); setcolor(color()); }
private:
 int _color,cback;
};

Особливості віртуальних функцій

1 Віртуальною функцією може бути тільки нестатична функція.
2 Віртуальною не може бути глобальна функція.
3 Функція, що підмінює віртуальну, у похідному класі може бути

описана як зі специфікатором virtual, так і без нього. В обох випадках вона
буде віртуальною.

4 Віртуальна функція може бути дружньою в іншому класі.
Чистою віртуальною називається компонентна функція, що має та-

ке визначення: virtual тип ім'я (параметри) = 0;
У нашому прикладі: virtual void draw()=0;
Чиста віртуальна функція «нічого не робить» і недоступна для ви-

кликів. Її призначення – бути основою для підмінюючих її функцій у похі-
дних класах. Клас, у якому є хоча б одна чиста віртуальна функція, назива-
ється абстрактним. Такий клас не може мати екземплярів (об'єктів); він
служить винятково для побудови ієрархії класів.

Клас може бути визначений усередині блоку, наприклад, усередині
тіла функції. Такий клас називається локальним.

Локалізація класу припускає неприступність його компонентів поза
областю визначення класу (поза тілом функції або блоку, у якому він опи-
саний або визначений). Локальний клас не може мати статичних даних.
Компонентні функції локальних класів можуть бути тільки убудованими.

 216

4.4 Основи мови програмування Java

Мова Java розроблена компанією Sun Microsystems (творець Джеймс

Гослинг працював в цієї компанії з 1984 до 2010 року) і є вільно розповсю-
джуваною. Транслятори цієї мови існують для більшості наявних опера-
ційних систем; програма транслюється не у файл, виконуваний системою
(наприклад, .exe), а в спеціальний байт-код, що виконується так званою
«віртуальною машиною Java» (JVM).

Якщо в С++ класи створювалися усередині програми (головної фун-
кції main), то в Java основною програмною одиницею є саме клас (class),
усередині якого, як правило, описується компонентна функція main (якщо
це необхідно). Розташування класу визначається середовищем розробки
(як правило, класи зберігаються в т. зв. пакетах – packages).

Вихідний код класу зберігається у файлі з розширенням java, клас пі-
сля перетворення на байт-код JVM – у файлі з розширенням class.

Для завдання ідентифікаторів Java дозволяє використати будь-які
символи, наприклад: static final double π=3.14159;

На відміну від С++, поля можуть бути явно ініціалізовані. При відсу-
тності ініціалізаторів полям привласнюються значення за замовчуванням
(для чисел – 0, для рядків – символ кінця рядка, для логічних – false, для
покажчиків – null).

Перед кожним ідентифікатором в java-програмі може бути скільки
завгодно модифікаторів, які наведено через пробіл у будь-якій послідовно-
сті, наприклад: public static void main(String[] args) { }

Тут описується головна функція класу, що нічого не повертає (void),
не міняється для різних екземплярів даного класу (static) та є загальнодо-
ступною (public). Приклад статичних методів – функції класу Math (звер-
тання йде не до екземпляра, а до самого класу: y=Math.sqrt(x)).

Можливі ще такі модифікатори:
final – описувані дані є константами (static final int max=50) або такий

клас не допускає спадкування;
abstract – такий клас не допускає створення екземплярів;
private, package, protected, public – рівень доступу;
native – визначення методу, описаного іншою мовою програмування

(як правило, С++).
Спадкування класів задається словом «extends»:

class Krug extends Point {}
Абстрактний базовий клас в Java має назву інтерфейс, однак він мо-

же мати атрибути, навіть з модифікаторами static і final. За замовчуванням
усі компоненти інтерфейсу є загальнодоступними (public). Приклад:

interface gr_obj {
int x,y;
void draw(); }

 217

Тут задаються координати об'єкта та ім'я функції для малювання об'-
єкта; саме функція буде описана в класах – нащадках.

Об'єкти створюються з використанням команди new:
 Krug k1 = new Krug();
Кожному методу класу неявно передаються покажчики на об'єкт, що

його викликав (this), і на предка цього об'єкта (super). При цьому допуска-
ється використання цих імен як явні виклики конструкторів: this(); super();

Приведення типів здійснюється вказівкою імені типу в дужках перед
ім'ям змінної, наприклад: mref=(More)sref; (тут mref й sref – змінні, More –
тип даних).

Перевірка приналежності об'єкта класу відбувається за допомогою
оператора instanceof:

if (k2 instanceof Krug) Krug k3=(Krug)k2;
Усі стандартні класи в Java зберігаються в пакетах. При звертанні

до компонентів пакета потрібно або щоразу повністю писати його ім'я:
java.util.Date now = new java.util.Date();

або попередньо (перед початком опису класу) імпортувати цей пакет:
import java.util.Date;
Date now = new Date();
На вершині ієрархії класів Java розташований клас Object, що міс-

тить такі методи:
boolean equals (Object obj2) – перевіряє збіг змісту поточного об'єкта

та об'єкта, заданого як параметр obj2;
Object clone() – клонує поточний об'єкт, тобто повертає його копію;
final Class getClass() – повертає інформацію про клас поточного об'єкта;
void finalize() – деструктор;
String toString() – повертає рядкове подання об'єкта.
Останні два методи можуть (і повинні) бути перевизначеними в кла-

сах-нащадках.
Java дозволяє неявне перетворення типів: змінна «вузького» типу

може бути автоматично перетворена до більше широкого:
int a=5;
System.out.println("k= "+a);

 218

Лабораторна робота 1. Класи та об'єкти

Мета роботи. Закріпити знання про об'єктну модель, класи й об'єк-

ти шляхом побудови основної структурної діаграми – діаграми класів.
Завдання. Для будь-якого додатку, розробленого під час попередніх

розділів, побудувати діаграму класів.
Можливий вид діаграми класів для простого додатка поданий на ри-

сунку 4.6. Тут на основній формі розташовані два компоненти для роботи
з базами даних sdfDataSet1 й dBGrid1, два класи «Кнопка» й «Поле уве-
дення тексту» пов'язані з основною формою відношенням агрегації, сама
база даних (компонента разом з текстовим файлом) – відношенням асоціа-
ції. Крім того, указується, що основні компоненти є нащадками стандарт-
них класів Object-Pascal – TForm, TButton й TEdit. Користувач пов'язаний
з основною формою відношенням асоціації.

BD.txt

fam : String
name : String
grp : String
year : Integer
r : Array[1..5] of Integer

first()
edit()
post()
next()
fieldByName()

Пользователь

(f rom Use Case View)

TForm

TButton1

top : Integer
left : Integer
width : Integer
height : Integer
caption : String

button1Click()

TButton TEdit

TForm1

sdfDataSet1 : TSdfDataSet
dBGrid1 : TDBGrid

TEdit1

top : Integer
left : Integer
width : Integer
height : Integer
text : String

edit1Change()

Рисунок 4.6 – Діаграма класів для простого додатка

Цей приклад можна реалізувати іншими способами. З одного боку,

компоненти sdfDataSet1 й dBGrid1 також можна зобразити окремими кла-
сами, пов'язаними з формою відносинами агрегації. З іншого боку, наведе-
ні для кнопки й поля уведення тексту атрибути можна не показувати на ді-
аграмі, тому що вони успадковуються від класів-предків. Конкретизація
компонентів (насиченість діаграми) визначається залежно від складності
додатка.

 219

Лабораторна робота 2. Програмування мовою Сі

Мета роботи. Відновлення навичок створення програм мовою про-

грамування Сі.
Завдання. Створити програми для вирішення завдань відповідно

до індивідуального завдання (табл. 4.1).

Таблиця 4.1

Вар. Завдання
1 2

1

Використовуючи цикл з передумовою, знайти суму y =∑
2

1

F

F
,

де а ≤ х ≤ b , х змінюється із кроком h = c.

F1: 2
33 sinxx ; F2: x

4+2x3-x; a = 0.3; b = 3.12; c = 0.15

2

Використовуючи цикл з післяумовою, знайти суму y =∑
2

1

F

F
,

де а ≤ х ≤ b , х змінюється із кроком h = c.
F1: x

3-lnx; F2: x
4-x2-x; a = 1.2; b = 13.4; c = 0.6

3

Використовуючи цикл з параметром, знайти суму y =∑
2

1

F

F
,

де а ≤ х ≤ b , х змінюється із кроком h = c.

F1: 2x2x 23 −+ ; F2: xcosx 1x2 +− ; a = 3.6; b = 7.2; c = 0.2

4

Обчислити таблицю значень функції




>
≤

=
,),(

;),(

2

1

axякщоxF

axякщоxF
y

для значень аргументу х в інтервалі від хn до xk із кроком hx.

F1: arcsin
30

X ; F2:
2ln x ; xn = 2.3; xk = 8.9; hx = 0.4; a = 5.4

5

Дано функцію








≤≤=
1, > x якщоf3(x),

, 1x 0 якщоf2(x),

0, < x якщоf1(x),

y

Методом перебору знайти екстремуми даної функції на відрізку.
Початкове й кінцеве значення відрізка, а також крок табуляції за-
давати довільно. F1: x c tg x5 32 ; F2:)1xln(+ ;

F3: e xX− −2 3

 220

Продовження таблиці 4.1

1 2

6

Дано функцію








≤≤=
1, > x якщоf3(x),

, 1x 0 якщоf2(x),

0, < x якщоf1(x),

y

Методом перебору знайти екстремуми даної функції на відрізку.
Початкове й кінцеве значення відрізка, а також крок табуляції
задавати довільно. F1: ctg x()3 1 2− ; F2: 2 + −xe x ; F3: sin3 2x

7
Знайти суми парних позитивних елементів кожного рядка матри-
ці A(3,3) і зберегти їх в одномірному масиві B

8 Знайти суми непарних негативних елементів кожного стовпця
матриці A(3,3) і зберегти їх в одномірному масиві B

9

Скласти програму з обов'язковим використанням підпрограми
для уведення матриці з екрана, її обробки й виводу на екран. За-
вдання: з кожного елемента матриці A(3,3) відняти суму її непа-
рних позитивних елементів

10

Скласти програму з обов'язковим використанням підпрограми
для уведення матриці з екрана, її обробки й виводу на екран. За-
вдання: кожен елемент матриці A(3,3) поділити на суму її парних
позитивних елементів

11

Скласти програму з обов'язковим використанням підпрограми
для уведення матриці з екрана, її обробки й виводу на екран. За-
вдання: кожен елемент матриці A(3,3) поділити на добуток її не-
парних негативних елементів

12
Скласти програму, що вводить рядок символів, виконує його об-
робку відповідно до завдання й виводить результати. Завдання:
видалити всі символи, що не є цифрами

13

Скласти програму, що вводить рядок символів, виконує його об-
робку відповідно до завдання й виводить результати. Завдання:
замінити всі знаки оклику («!») на символ «*», а символ «крапка»
(«.») – багатокрапкою (три крапки «…»)

14
Скласти програму, що вводить рядок символів, виконує його об-
робку відповідно до завдання й виводить результати. Завдання:
видалити з рядка всі здвоєні, строєні тощо символи

15

Скласти програму, що вводить рядок символів, виконує його об-
робку відповідно до завдання й виводить результати. Завдання:
вставити пробіл після кожного символу «.» «,» «!» або «?», якщо
за цими символами не треба пробіл (тобто треба будь-який сим-
вол, крім пробілу)

 221

Продовження таблиці 4.1

1 2

16 Сформувати файл із модулів цілих чисел, знайти суму квадратів
парних компонентів

17

Прийнявши, що координати точок на площині задаються двома
числами x й y, скласти програму, що вводить із клавіатури коор-
динати точок і записує їх послідовно у файл: спочатку x, а потім
y. Після завершення уведення здійснюється перегляд файла і йо-
го оброблення: знайти суму відстаней кожної точки від центра
координат

18
Сформувати файл із чисел послідовності (-1)k*0.2k/k. Знайти
найбільший з компонентів файла

19

Створити файл, що містить таку структуру даних: «Прізвище
здобувача; Найменування групи; Місце проживання; Місце наро-
дження; Кількість братів і сестер». Вибрати з файла й видати на
екран список студентів, що проживають не там, де народилися
(змінили місце проживання)

20

Створити файл, що містить таку структуру даних: «Прізвище
здобувача; Найменування групи; Дата народження; Середній рей-
тинг». Вибрати з файла й видати на екран список студентів
заданої групи, що мають середній рейтинг не нижче 4,5

21

Створити файл, що містить таку структуру даних: «Номер книги
(код, шифр); Прізвище автора; Найменування книги; Рік видання;
Кількість сторінок». Вибрати з файла й видати на екран список
книг, виданих раніше заданого року

22

З використанням модуля роботи із графікою скласти програму
для малювання зображення:

23

З використанням модуля роботи із графікою скласти програму
для малювання зображення:

 222

Продовження таблиці 4.1

1 2

24

Сформувати динамічний список «Стік» (LIFO) структур (не менш
5), що містить дані про здобувачів у такому вигляді: «Прізвище
Ім'я Група РН RS», де РН – рік народження, RS – середній рейтинг.
Вивести на екран дані про всіх студентів, чиї імена починаються з
літери «Н»

25

Сформувати динамічний список «Черга» (FIFO) структур (не менш
5), що містить дані про здобувачів у такому вигляді: «Прізвище
Ім'я Група РН RS», де РН – рік народження, RS – середній рейтинг.
Вивести на екран дані про всіх здобувачів старше 18 років

Приклади виконання завдань

1. Знайти екстремуми функції





<++
≥+=

0,32

;0,1)sin(
2 xякщоxx

xякщоx
y

на інтервалі зміни аргументу від –π до π.

#include <stdio.h>
#include <math.h>
int main()
{
 float Pi=M_PI;
 float x,y,xn=-Pi,xk=Pi,xh=Pi/3,min=1E+10,max=-1E+10,xmin,xmax;
 printf("\n X Y\n");
 for (x=xn;x <= xk;x+=xh)
 {
 if (x < 0) {y=pow(x,2)+2*x+3;} else {y=sqrt(sin(x)+1);}
 printf("%8.5f %8.5f\n",x,y);
 if (y > max) {max=y; xmax=x;}
 if (y < min) {min=y; xmin=x;}
 }
printf("Мінімум= %8.5f при x=%8.5f\n",min,xmin);
printf("Максимум= %8.5f при x=%8.5f\n",max,xmax);
}

2. Знайти мінімальні елементи кожного стовпця матриці A(3,3) і збе-

регти їх в одномірному масиві B.

#include <stdio.h>
#include <math.h>
int main()

 223

{
 int min,I,j,b[3];
 int a[3][3]={4,3,1,6,2,7,1,9,3};
 printf("Вихідна матриця:\n");
 for (i=0;i<3;i++) {
 for (j=0;j<3;j++) {printf("%3i",a[i][j]);}
 printf("\n");}
 for (j=0;j<3;j++) { min=a[0][j];
 for (i=1;i<3;i++) {min=a[i][j]<min?a[i][j]:min;}
 b[j]=min;}
 printf("\nРезультат:\n");
 for (j=0;j<3;j++) {printf("%3i",b[j]);} printf("\n");
}

3. До кожного елемента матриці M(3,3) додати суму її непарних не-

гативних елементів.

#include <stdio.h>
#include <conio.h>
void vvod(int a[3][3])
{
 printf("Уведіть матрицю:\n");
 for (int i=0;i<3;i++) {for (int j=0;j<3;j++) {scanf("%i",&a[i][j]);}}
}
void vyvod(int a[3][3])
{
 for (int i=0;i<3;i++) {
 for (int j=0;j<3;j++) {printf("%4i",a[i][j]);}
 printf("\n");}
}
int summa(int a[3][3])
{
 int sum=0;
 for (int i=0;i<3;i++) {
 for (int j=0;j<3;j++) {
 if ((a[i][j] < 0) && (a[i][j]%2!=0)) {sum+=a[i][j] ;}
 }}
 return sum;
}
void work(int s,int a[3][3])
{
 for (int i=0;i<3;i++) {
 for (int j=0;j<3;j++) {a[i][j]+=s;}}
}
int main()
{
 int m[3][3];

 224

 vvod(m);
 printf("\nВихідна матриця:\n"); vyvod(m);
 int s=summa(m);
 printf("\nСума = %3i\n",s); work(s,m);
 printf("\nРезультат:\n"); vyvod(m);
 getche();
}

4. Видалити із заданого рядка символів усі цифри.

#include <stdio.h>
#include <conio.h>
#include <string.h>
 int main()
{
 int i,k;char *st="" ;
 printf("Уведіть рядок символів:\n"); scanf("%s",st);
 printf("\nВихідний рядок:\n%s\n",st); i=0;
 while (i<strlen(st)) {
 if ((*(st+i)>=’0’)&&(*(st+i)<=’9’)) {
 for (k=I;k<=strlen(st);k++) {
 (st+k)=(st+k+1);}}
 else {i++;}
 }
 printf("Результат:\n%s\n",st);
getche();
}

5. Сформувати файл із модулів цілих чисел, знайти суму парних

компонентів файла. Вивід результатів продублювати у текстовий файл.
#include <stdio.h>
#include <conio.h>
#include <math.h>
int main()
{
FILE *f,*g;
f=fopen("lab8.dat","w");
 printf("Уводите цілі числа, ознаку кінця – 0:\n");
int k;
do { scanf("%i",&k); if (k!=0) {fwrite(&k,sizeof(k),1,f);}} while (k);
fclose(f);
 printf("Зміст файлу:\n");
if ((f=fopen("lab8.dat","r"))==NULL) {
printf("Помилка при читанні файла!\n");return;}
g=fopen("lab8.txt","w");

 225

fprintf(g," Зміст файлу:\n");
int s=0;
do { fread(&k,sizeof(k),1,f);
if (!feof(f)) {printf("%4i",k);fprintf(g,"%4i",k);if (!(k%2)) {s+=k;}}
} while (!feof(f));
printf("\nСума = %i\n",s);fprintf(g,"\nСума = %i\n",s);
fclose(f);fclose(g);getche();
}

6. Сформувати файл «Список здобувачів» форматом «Прізвище –

група – рік_народження – 5_рейтингів», попередньо обчисливши додатко-
ве поле – максимальний рейтинг. Вивести на екран й у текстовий файл
список здобувачів заданої групи.

#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
struct stud {char fam[10],gr[10]; int year,rt[5],max;};
stud ek[3]={{"Іванов","ЕК-03-1",1986,{70,55,55,60,75}},
 {"Петров","ЕК-03-2",1986,{61,62,63,74,55}},
 {"Сидоров","ЕК-03-2",1986,{98,99,97,90,91}}}, s1;
// шукаємо максимальний рейтинг
int i,j,max;
for (i=0;i<3;i++) { max=ek[i].rt[1];
for (j=0;j<5;j++) { if (ek[i].rt[j] > max) {max=ek[i].rt[j];}}
ek[i].max=max;}
FILE *f,*g;
// запис у файл
f=fopen("rgr2.dat","w");
for (i=0;i<3;i++) { fwrite(&ek[i],sizeof(stud),1,f);} fclose(f);
// читання
printf("Зміст файлу:\n");
if ((f=fopen("rgr2.dat","r"))==NULL) {
printf("Помилка при читанні файлу!\n");return;}
g=fopen("rgr2.txt","w"); fprintf(g, "Уміст файлу:\n");
do { fread(&s1,sizeof(stud),1,f);
if (!feof(f)) {
printf("%12s%12s%6i ",s1.fam,s1.gr,s1.year);
fprintf(g,"%12s%12s%6i ",s1.fam,s1.gr,s1.year);
for (j=0;j<5;j++) {printf("%3i",s1.rt[j]);fprintf(g,"%3i",s1.rt[j]);}
printf("%6i\n",s1.max);fprintf(g,"%3i\n",s1.max);
}} while (!feof(f));
// читання з пошуком
char group[10];
printf("Уведіть групу для пошуку:\n"); scanf("%s",&group);

 226

printf("Здобувачі групи %s:\n",group);
fprintf(g," Здобувачі групи %s:\n",group); fseek(f,0L,SEEK_SET);
do { fread(&s1,sizeof(stud),1,f);
if ((!feof(f))&&(!strcmp(s1.gr,group))) {
printf("%12s%12s%6i ",s1.fam,s1.gr,s1.year);
fprintf(g,"%12s%12s%6i ",s1.fam,s1.gr,s1.year);
for (j=0;j<5;j++) {printf("%3i",s1.rt[j]);fprintf(g,"%3i",s1.rt[j]);}
printf("%6i\n",s1.max);fprintf(g,"%3i\n",s1.max);
}} while (!feof(f));
//printf("\nСума = %i\n",s);fprintf(g,"\nСума = %i\n",s);
fclose(f);fclose(g);getche();
}

7. Намалювати зображення

Рисунок 4.7
#include <stdio.h>
#include <conio.h>
#include <graphics.h>
void axes(int xc, int yc)
{
line(xc-100,yc,xc+100,yc); line(xc+100,yc,xc+95,yc-2);
line(xc+100,yc,xc+95,yc+2); line(xc,yc-100,xc,yc+100);
line(xc,yc-100,xc-2,yc-95); line(xc,yc-100,xc+2,yc-95);
}
 int main()
{
int xc,yc,*gd,*gm;
*gd=0;
initgraph(gd,gm,"");
if (graphresult() !=0) {printf("Error!");}
xc=200;yc=200;axes(xc,yc); setfillstyle(3,getmaxcolor());
pieslice(xc,yc,0,90,50); pieslice(xc,yc,270,360,50);
line(xc,yc-50,xc-50,yc);floodfill(xc-2,yc-2,getmaxcolor());
line(xc-50,yc,xc,yc+50);floodfill(xc-2,yc+2,getmaxcolor());
getch(); closegraph();
}

 227

8. Сформувати зв'язний список структур, що містить дані про здобу-
вачів. Вивести на екран список здобувачів, у яких прізвища почина-
ються на літеру A.

#include <stdio.h>
#include <conio.h>
#include <math.h>
struct stud { char fam[10],name[10],group[10]; int gr,rs;};
struct dstud {
 stud data;
 dstud *pPrior;
 dstud *pNext;
 };
void sread(stud &s)
{
 printf("Family: \n");scanf("%s",&s.fam);
if (s.fam[0] != ‘*’) {
printf("Name: \n");scanf("%s",&s.name);
printf("Group: \n");scanf("%s",&s.group);
printf("Year: \n");scanf("%i",&s.gr);
printf("Rating: \n");scanf("%i",&s.rs);
}}
void main(void)
{
dstud *pBegin=NULL,*pEnd=NULL,*pList=NULL;
stud s;
int k=0;
// Створення списку
clrscr();
pList=new(dstud);
(*pList).pPrior=NULL;
(*pList).pNext=NULL;
sread(s);(*pList).data=s;
pBegin=pList;
// Додавання даних
while (s.fam[0] != '*') {
sread(s);
if (s.fam[0] != '*') {
pEnd=new(dstud);
(*pEnd).pPrior=pList;
(*pEnd).pNext=NULL;
(*pEnd).data=s;
(*pList).pNext=pEnd;
pList=pEnd;
}}
printf("Увесь список:\n");
pList=pBegin;

 228

while (pList) {
printf(“F=%s N=%s G=%s Y=%i Rs=%i\n”,(*pList).data.fam,
(*pList).data.name,(*pList).data.group,(*pList).data.gr,(*pList).data.rs);
pList=(*pList).pNext;
}
 printf("Необхідні здобувачі:\n");
pList=pBegin;
while (pList) {
if ((*pList).data.fam[0]== 'A') {
k++;
printf(“F=%s N=%s G=%s Y=%i Rs=%i\n”,(*pList).data.fam,
(*pList).data.name,(*pList).data.group,(*pList).data.gr,(*pList).data.rs);
}
pList=(*pList).pNext;
}
 printf("Усього знайдено %i здобувачів. ",k);
}

Лабораторна робота 3. Робота з функціями

Мета роботи. Вивчити таке поняття об’єктно-орієнтованого про-

грамування, як «перевантаження функцій», навчитися використати функції
з невизначеною кількістю параметрів.

Завдання. Створити підпрограму-функцію, що дозволяє виконувати
дії відповідно до індивідуального завдання (табл. 4.2). У всіх випадках, де
необхідно, використати перевантаження функцій.

Таблиця 4.2

№ Завдання
1 2
1 Знаходження суми трьох цілих чисел або двох речовинних
2 Знаходження суми трьох цілих чисел або різниці двох речовинних

3
Знаходження суми чотирьох цілих чисел або добутку трьох речо-
винних

4 Знаходження добутку трьох цілих чисел або двох речовинних
5 Знаходження добутку трьох цілих чисел або суми двох речовинних
6 Знаходження суми трьох цілих чисел або різниці двох
7 Знаходження суми чотирьох цілих чисел або добутку трьох
8 Знаходження добутку трьох цілих чисел або суми двох

9
Знаходження середнього арифметичного трьох цілих чисел або суми
двох речовинних

10
Знаходження середнього арифметичного трьох цілих чисел або суми
двох речовинних

 229

Продовження таблиці 4.2

1 2

11
Знаходження середнього арифметичного двох цілих чисел або добу-
тку трьох речовинних

12
Знаходження середнього арифметичного двох цілих чисел або добу-
тку трьох речовинних

13
Знаходження середнього геометричного трьох цілих чисел або суми
двох речовинних

14
Знаходження середнього геометричного трьох цілих чисел або добу-
тку двох речовинних

15
Знаходження середнього геометричного трьох цілих чисел або суми
двох речовинних

16
Знаходження середнього геометричного трьох цілих чисел або добу-
тку двох речовинних

17 Знаходження суми довільного набору цілих чисел
18 Знаходження суми довільного набору речовинних чисел
19 Знаходження добутку довільного набору цілих чисел
20 Знаходження добутку довільного набору речовинних чисел

21 Знаходження середнього арифметичного довільного набору цілих
чисел

22 Знаходження середнього арифметичного довільного набору
речовинних чисел

23 Знаходження середнього геометричного довільного набору цілих чи-
сел

24 Знаходження середнього геометричного довільного набору речовин-
них чисел

25 Знаходження суми довільного набору цілих чисел

Приклади виконання завдання

1. Створити функцію для знаходження мінімального із трьох цілих

чисел або максимального із двох речовинних (з використанням «переван-
таження»).

#include <stdio.h>
int minimax(int a, int b, int c)
{
 int m;
 m=a<b?a:b;
 m=m<c?m:c;
 return m;
}
float minimax(float a, float b)
{
 float m;

 230

 m=a>b?a:b;
 return m;
}
 int main()
{
 int k;
 k=minimax(6,1,9);
 printf("Мінімальне ціле = %i\n",k);
 float x;
 x=minimax(6.27,5.98);
 printf("Максимальне речовинне = %5.2f\n",x);
}

2. Створити функцію для знаходження добутку довільного набору

цілих чисел.

#include <stdio.h>
int proizv1(int a,...)
// 0 – ознака закінчення списку параметрів
{
 int pr=1,*p=&a;
 while (*p) {pr*=*(p++);}
 return pr;
}
int proizv2(int a,...)
// Перший параметр – кількість параметрів
{
 int pr=1,*p=&a;
 while (a--) {pr*=*(++p);}
 return pr;
}
int main()
{
 int p1=proizv1(2,3,4,0),p2=proizv2(3,2,3,4);
 printf("P1= %i\nP2= %i\n",p1,p2);
}

Лабораторна робота 4. Пересування графічних об'єктів на С++

Мета роботи. Вивчити основні визначення об’єктно-орієнтованого

програмування на прикладі програми для переміщення графічних об'єктів
Завдання. Скласти програму для вирішення завдання (табл. 4.3).

Програма має містити нові класи (включаючи абстрактні), конструктори
й деструктори, підтримувати спадкування, поліморфізм і видимість ком-
понентів.

 231

Таблиця 4.3

Вар. Завдання
1 2
1 Намалювати на екрані десять концентричних окружностей

2 Намалювати в центрі екрана десять вкладених один в одного
прямокутників

3
Переробити програму «кіл на воді» (див. приклад) так, щоб кола
спочатку розходилися з однієї точки, а потім назад до неї сходи-
лися

4 Переміщати коло за горизонталлю із заданим кроком і затримкою
в одну секунду

5 Переміщати коло за вертикаллю із заданим кроком і затримкою в
одну секунду

6 Переміщати прямокутник за горизонталлю із заданим кроком і
затримкою в одну секунду

7 Переміщати прямокутник за вертикаллю із заданим кроком і за-
тримкою в одну секунду

8 Переробити програму «кіл на воді» (див. приклад), замінивши ко-
ла на прямокутники

9 Переміщати коло за діагоналлю із заданим кроком і затримкою в
півтори секунди

10 Переміщати прямокутник за діагоналлю із заданим кроком і за-
тримкою в півтори секунди

11 Розмістити на екрані дві розташовані поруч окружності, що «пе-
реморгуються»

12 Переміщати коло, уписане у прямокутник, за горизонталлю із за-
даним кроком і затримкою в одну секунду

13 Переміщати коло, уписане у прямокутник, за вертикаллю із зада-
ним кроком і затримкою в одну секунду

14 Переміщати коло, уписане у прямокутник, за діагоналлю із зада-
ним кроком і затримкою в півтори секунди

15 Переміщати коло за периметром розташованого в центрі екрана
прямокутника

16 Переміщати коло по вершинах розташованого в центрі екрана
прямокутника

17 Намалювати трикутник довільної форми й переміщати коло за
його периметром

18 Намалювати трикутник довільної форми й переміщати коло по
його вершинах

19 Переміщати трикутник за горизонталлю із заданим кроком і за-
тримкою в одну секунду

20 Переміщати трикутник за вертикаллю із заданим кроком і затри-
мкою в одну секунду

21 Переміщати трикутник за діагоналлю із заданим кроком і затрим-
кою в півтори секунди

 232

Продовження таблиці 4.3

1 2
22 Переміщати коло екраном випадковим чином
23 Переміщати прямокутник екраном випадковим чином
24 Переміщати трикутник екраном випадковим чином

25 Зробити так, щоб на екрані по черзі виникали й зникали коло,
прямокутник і трикутник

Приклад виконання завдання

Зобразити на екрані розбіжні концентричні окружності («кола на воді»).

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <graphics.h>
class gr_init
{
public:
 gr_init(int driver=0)
 {
 *gd=driver;
 initgraph(gd,gm,"");
 if (graphresult() !=0) {printf("Error!");abort();}
 }
 ~gr_init()
 {
 closegraph();
 }
private:
 int *gd,*gm;
};
class gr_obj
{
public:
 gr_obj(int col=7)
 {_color=col;}
 virtual void draw()=0;
 int color()
 {
 return _color;
 }
public:
 void show()
 {

 233

 setcolor(color()); draw();
 }
 void hide()
 {
 cback=getcolor(); setcolor(getbkcolor()); draw(); setcolor(color());
 }
private:
 int _color,cback;
};
class point: public gr_obj
{
public:
 point(int xp=0, int yp=0, int col=7): gr_obj(col)
 {setpx(xp); setpy(yp); show();}
 ~point()
 {
 hide();
 }
 void draw()
 {
 putpixel(x,y,color());
 }
 int getpx()
 {
 return x;
 }
 void setpx(int px)
 {
 x=px;
 }
 int getpy()
 {
 return y;
 }
 void setpy(int py)
 {
 y=py;
 }
private:
 int x,y;
};
class krug: public point
{
public:
 krug(int xc=0, int yc=0, int rad=0, int col=7): point(xc,yc,col)
 {r=rad; show();}
 ~krug()

 234

 {
 hide();
 }
 void draw()
 {
 circle(getpx(),getpy(),getrad());
 }
 void move(int newx, int newy, int newr)
 {
 hide();
 setpx(newx); setpy(newy); setrad(newr);
 show();
 }
 int getrad()
 {
 return r;
 }
 void setrad(int rad)
 {
 r=rad;
 }
private:
 int r;
};
void main()
{
gr_init gr(0);
krug kr(300,200,100);
for (int i=1; i<=10; i++) {
 kr.move(300,200,10+i*15); delay(200); }
getch();
}

Лабораторна робота 5. Побудова діаграми класів

Мета роботи. Навчитися об’єктно-орієнтованому аналізуванню

та закріпити навички побудови діаграми класів.
Завдання. Об’єктно-орієнтовано проаналізувати завдання з лабора-

торної роботи 4 і побудувати для неї діаграму класів.

Приклад виконання завдання

1 Об’єктно-орієнтоване аналізування завдання
У розглянутій області можна зазначити такі класи:

 235

1. Графічний режим. Властивості: графічний драйвер (gd), графіч-
ний режим (gm). Методи: відкриття (конструктор), закриття (деструктор).

2. Графічний об'єкт. Властивості: кольори ліній, кольори фону. Ме-
тоди: визначення кольорів ліній, намалювати об'єкт, показати об'єкт, схо-
вати об'єкт. «Намалювати об'єкт» – чисто віртуальна функція, точний зміст
якої буде визначено в спадкоємцях класу. «Показати об'єкт» установлює
кольори ліній і викликає «Намалювати об'єкт»; «Сховати об'єкт» установ-
лює кольори ліній ідентичним кольорам тла й знову викликає «Намалюва-
ти об'єкт». Оскільки даний клас є основою для створення ієрархії графіч-
них класів, його можна вважати абстрактним (зображується курсивом).

3. Точка (спадкоємець «Графічного об'єкта»). Нові властивості: ко-
ординати. Нові методи: повернення й установка значень координат, нама-
лювати об'єкт.

4. Коло (спадкоємець «Точки»). Нова властивість: радіус. Нові мето-
ди: повернення й установка значень радіуса, намалювати об'єкт.

2 Побудова діаграми класів
Діаграма класів подана на рисунку 4.8.

Графический режим

gd
gm

InitGraph()
CloseGraph()

Графический объект

Цвет линий
Цвет фона

GetColor()
<<virtual>> Draw()
Show()
Hide()

Точка

x
y

Draw()
SetX()
SetY()
GetX()
GetY()

Круг

r

Draw()
SetR()
GetR()

Рисунок 4.8 – Диаграма класів

 236

Лабораторна робота 6. Програмування мовою Java

Мета роботи. Отримання навичок складання програм різної склад-

ності мовою програмування Java.
Завдання:
1. Вивчити середовище програмування Eclipse.
2. Створити клас, що дозволяє вирішити завдання відповідно до ін-

дивідуального завдання (табл. 4.1). При створенні не забути вказати прави-
льні імена.

3. Виконати створений пакет.

Приклад виконання завдання
Знайти екстремуми функції





<++
≥+=

0,32

;0,1)sin(
2 xякщоxx

xякщоx
y

 на інтервалі зміни аргументу від –π до π.

package lab6;
import java.io .*;
public class lab6 {
 public lab6() {
 }
 public static void main(String[] args) {
 double x,y,xn=-Math. PI,
xk=Math. PI,xh=Math. PI/3,min=1E+10,max=-1E+10,xmin=0,xmax=0;
 for (x=xn;x<=xk;x+=xh)
 {
 if (x < 0) {y=Math. pow(x,2)+2*x+3;} else
{y=Math. sqrt(Math. sin(x)+1);}
 System. out.println("x=" +Math. floor(x*1000)/1000+ "
y=" +Math. floor(y*1000)/1000);
 if (y > max) {max=y; xmax=x;}
 if (y < min) {min=y; xmin=x;}
 }
 System. out.println("Min=" +Math. floor(min*1000)/1000+ "
x=" +Math. floor(xmin*1000)/1000);
 System. out.println("Max=" +Math. floor(max*1000)/1000+ "
x=" +Math. floor(xmax*1000)/1000);
 }
}

 237

x=-3.142 y=6.586
x=-2.095 y=3.197
x=-1.048 y=2.002
x=-0.001 y=2.999
x=1.047 y=1.366
x=2.094 y=1.366
x=3.141 y=1.0
Min=1.0 x=3.141
Max=6.586 x=-3.142

 238

 ЛІТЕРАТУРА

1 Мельников О. Ю. Програмування та алгоритмічні мови : посібник
[для студентів спеціальностей «Системний аналіз» та «Інформаційні
системи та технології»] / О. Ю. Мельников. – Краматорськ : ДДМА,
2018. – 236 с. – ISBN 978-966-379-870-7.

2 Мельников О. Ю. Об’єктно-орієнтований аналіз і проєктування
інформаційних систем : посібник [для студентів спеціальностей «Сис-
темний аналіз» та «Інформаційні системи та технології»] /
О. Ю. Мельников. – Вид. 3-є, перероб. та доп. – Краматорськ : ДДМА,
2020. – 208 с. – ISBN 978-966-379-954-4.

3 Мельников О. Ю. Алгоритми і структури даних : навчальний по-
сібник [для здобувачів вищої освіти за спеціальностями «Системний
аналіз» та «Інформаційні системи та технології»] /
О. Ю. Мельников. – Краматорськ : ДДМА, 2024. – 120 с. – ISBN 978-617-
7889-78-5.

4 Ковалюк Т. В. Основи програмування / Т. В. Ковалюк. – Київ :
Видавнича група BHV, 2005. – 384 с.

5 Шищук В. В. Основи програмування на алгоритмічній мові Pascal
/ В. В. Шищук. – Київ : Кондор, 2006. – 224 с.

6 Алгоритмічна мова Паскаль : навчал. посібник / [уклад.
Д. Д. Татарчук]. – Київ : ІВЦ Політехніка, 2006. – 85 с.

7 Вакалюк Т. А. Програмування мовою Pascal : навчально-
методичний посібник [для студентів фізико-математичного факуль-
тету] / Т. А. Вакалюк. – Житомир : ФОП Левковець Н. М., 2016. – 232 c.

8 Васильєв О. М. Програмування на С++ в прикладах і задачах /
О. М. Васильєв. – Київ : Ліра-К,, 2019. – 382 с.

9 Підручник з мови програмування Pascal. – Режим доступу :
https://uk.wikibooks.org/wiki/Pascal

10 Григорович В. Г. Алгоритмізація та програмування / В. Г. Григо-
рович. – Львів : Магнолія, 2023. – 357 с.

11 Stroustrup B. Programming: Principles and Practice Using C++ [Елек-
тронний ресурс] / Stroustrup Bjarne. – 2014. – Режим доступу :
https://www.pdfdrive.com/programming-principles-and-practice-using-c-
e18903967.html.

12 Бублик В. В. Об’єктно-орієнтоване програмування : підручник /
В. В. Бублик. – Київ : ІТ-книга, 2015. – 624 с. – Режим доступу :
http://itknyga.com.ua/docs/OOP_final.pdf

 239

13 Алхімова С. М. Обєктно-орієнтоване програмування : підручник:
у 2 ч. / С. М. Алхімова. – Київ : КПІ ім. Ігоря Сікорського, Вид-во «Політе-
хніка», 2019.

Ч. 2 : Обєктно-орієнтований підхід до розробки програмного забез-
печення. – 2019. – 192 с.
14 Петрик О. Об’єктно-орієнтоване програмування в середовищі

С++. Лабораторний практикум : навчал. посібник / О. Петрик. – Терно-
піль, ТНТУ імені Івана Пулюя, 2011. – 188 с.

15 Кащеєв Л. Б. Інформатика. Основи візуального програмування :
навчал. посібник / Л. Б. Кащеєв, С. В. Коваленко, С. М. Коваленко. – Хар-
ків : Веста, 2011. – 192 с.

16 Безменов М. І. Основи програмування в середовищі Delphi : на-
вчал. посібник / М. І. Безменов. – Харків : НТУ «ХПІ», 2010. – 608 с.

17 Мельников О. Ю. Робота у середовищі Borland-Delphi : навчаль-
ний посібник / О. Ю. Мельников, П. І. Сагайда. – Краматорськ : ДДМА,
2005. – 100 с. – ISBN 966-379-021-0.

18 Booch Grady. Object-Oriented Analysis and Design with Applications,
3rd Edition / Grady Booch, Robert Maksimchuk, Michael Engle, Jim Conallen,
Kelli Houston, Bobbi Young Ph.D. – Addison-Wesley Professional Publ., 2007.
– 694 p.

19 Кравченко В. І. Основи програмування та алгоритмічні мови :
методичний посібник до лабораторних і самостійних робіт [для сту-
дентів спеціальності 7.080402] / В. І. Кравченко, О. В. Веремій,
В. В. Зоненко. – Краматорськ : ДДМА, 2005. – Ч. 1. – 104 с.

20 Васильєв О. М. Програмування мовою Java / О. М. Васильєв. –
Тернопіль : Навчальна книга – Богдан, 2020. – 696 с.

 240

Навчальне видання

МЕЛЬНИКОВ Олександр Юрійович

ПРОГРАМУВАННЯ
ТА АЛГОРИТМІЧНІ МОВИ

Навчальний посібник

для здобувачів вищої освіти за спеціальностями

«Системний аналіз та наука про дані» та «Інформаційні системи і тех-

нології»

Редагування і комп’ютерне верстання І. І. Дьякова

57/2024. . Формат 60 х 84/16. Ум. друк. арк.14.00
 Обл.-вид. арк. 8.32. Тираж 100 прим. Зам. № 8.

Видавець і виготівник
Донбаська державна машинобудівна академія
84313, м. Краматорськ, вул. Академічна, 72.

Свідоцтво суб’єкта видавничої справи
ДК № 1633 від 24.12.2003

